
Lecture 23:

Iterative Scaling Algorithms

Sam Roweis

March 29, 2004

Learning in Fully Observed Models

• We now know how to do inference efficiently and exactly in a wide
class of directed and undirected models using either belief
propagation or junction tree.

• Let us return to learning for a while.

• For fully observed directed models, learning was trivial: we just
estimated the parameters separately for micro-models consisting of
each node and all of its parents.

• For decomposable (triangulated) models, with potentials only on
the maximal cliques, learning is also trivial: set each
clique/separator potential to the observed marginal:

pML =

∏

C p̃(xC)
∏

S p̃(xS)

and then assign each separator to exactly one clique and set
psi(xC) to be the marginal divided by the separators assigned to it.

Learning with non-maximal Clique potentials

• We saw when we studied IPF that learning in undirected models
could be hard if the clique potentials were not only over maximal
cliques of a triangulated graph, because of the normalizer (partition
function) Z.

• A necessary condition achieved at the maximum likelihood
parameters is that the model’s marginals over all the cliques used in
the parameterization must match the empirical marginals.

• IPF solved this problem by fixing the conditional p(xC̄|xC) and
updating the marginal p(xC) to match the empirical marginal.

• This allowed us to start with an overcomplete parameterization
(e.g. from a non-decomposable model) where only some of the
marginals matched, and to fix things up as we went.

ψ
(t+1)
c (xc) = ψ

(t)
c (xc)

q(xc)

p(t)(xc)

Geometric Interpretation of IPF

• We can think of IPF as performing a sequence of “projections” in
the space of distributions. Each projection replaces the current
distribution with the closest new distribution to it in some
restricted family.

• For IPF, each step projects onto
a manifold which has the correct
marginal distribution for one of the
the cliques. The projection lands on
the distribution closest in KL distance
to our current distribution but with
the correct new marginal. All itera-
tions stay in the exponential family E .
The algorithm converges to the single
point that is in E and at the intersec-
tion of all the manifolds MC .

E
pM

M C

M C1
2

p(0)

p(1)

p(5)



Iterative Scaling

• Iterative Scaling takes the idea of IPF one step further, and
provides us with an algorithm for learning parameters in general
feature-based (maximum-entropy) models:

p(x|θ) =
1

Z(θ)
exp

{

∑

i

θifi(xCi)

}

• Let us consider the scaled likelihood function

˜̀(θ;D) =
1

N

∑

x

n(x) log p(x|θ) =
∑

x

p̃(x) log p(x|θ)

• For now, we place the following constraints on the features:

fi(x) ≥ 0
∑

i

fi(x) = 1 ∀x

Generalized Iterative Scaling (GIS)

• The GIS algorithm updates based on the ratios of empirical
marginals to model marginals (like IPF) but it updates the whole
distribution in parallel (unlike IPF):

p(t+1)(x) = p(t)(x)
∏

i

(

∑

y p̃(y)fi(y)
∑

y p
(t)(y)fi(y)

)fi(x)

• This is equivalent to the individual updates:

θ
(t+1)
i = θ

(t)
i + log

(

∑

y p̃(y)fi(y)
∑

y p
(t)(y)fi(y)

)

• In general, the intermediate distributions p(t) from GIS are not

normalized, but it turns out that the updates still work fine, and
also that the limiting distribution to which we converge will be
normalized.

Comparison between GIS and IPF

• IPF updates the distribution one clique at a time, while GIS
updates all cliques in parallel.

• You can think of IPF as using special features which just measure
the marginals over clique subsets of the variables:

fi(xC)=1 if xC = x
(i)
C

and 0 otherwise

• Now the sum of the features is equal to the number of cliques.

• For any one clique xC, only one of the features is active, so within
the clique, the features are non-negative and sum to one.

• So one IPF update is like one step of GIS restricted to a single
clique.

• However, IPF corresponds to a sequence of GIS iterations in which
the set of features updated at each iteration is always changing.

Learning with Latent Variables

• Finally, we return to the most general learning situation, that of
learning with latent (hidden) variables.

• In general, we deal with this using the EM algorithm, by lower
bounding the likelihood. We then require two steps:

– The E-step needs to perform inference over the hidden variables
given the observed data and the current parameters. For this we
use Bayes rule, belief propagation (on trees), or a junction tree
algorithm.

– The M-step needs to update the parameters to the values which
maximize the lower bound (e.g. maximize the expected complete
log likelihood). For this we can use exact analytic updates (e.g.
mixtures of Gaussians, factor analysis, HMMs) or we can plug in
IPF/GIS/... as our “fully observed” M-step update algorithm.



Learning with GIS

• For example, if we wanted to apply GIS to learn the parameters of a
complex maximum-entropy feature model with hidden variables xH ,
we would need to perform inference to compute the expected
sufficient statistics of the features given the observed data xE and
the parameters θ:

f̄i =
∑

xH

p̃(xE)p(xH|xE, θ)fi(xE, xH)

• We would then use these expected statistics in the updates:

p(t+1)(xE, xH) = p(t)(xE, xH)
∏

i

(
∑

yE
f̄i(yE)

∑

yE
p(t)(yE, yH)fi(yE, yH)

)fi(xE,xH)

Derivation of GIS

• The derivation of GIS, which proves that it always increases the
(scaled) likelihood is quite complex. It involves bounding the
likelihood twice, once using an upper bound on the logarithm of the
sum over all data which appears in the partition function (thus
lower bounding the term − logZ) and a second time to lower
bound the exponential of a sum which couples all the parameters
together.

• This second bound is what requires all the features to be positive
and sum to one, since the feature values play the role of the convex
combination coefficients when we apply Jensen to execute the
second bound.


