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Constrained Clique Potentials

• So far we have discussed the most general form of a graphical
model in which maximal cliques are parametrized by general
potential functions ψC(xC).

• But for large cliques these general potentials are exponentially
costly for inference and have exponential numbers of parameters
that we must learn from limited data.

• One solution: change the graphical model to make cliques smaller.
But this changes the dependencies, and may force us to make more
independence assumptions than we would like.

• Another solution: keep the same graphical model, but use a less
general parameterization of the clique potentials.

• This is the idea behind feature-based models.
It is also the same idea behind factor graphs which we already saw.

Features

• Consider a clique xC of random variables in a graphical model,
e.g. three consecutive characters c1c2c3 in a string of English text.

• How would we build a model of p(c1c2c3)?

• The full joint clique potential would be huge: 263 − 1 parameters.

• However, we often know that some particular joint settings of the
variables in a clique are quite likely or quite unlikely.
e.g. ing, ate, ion, ?ed, qu?, jkx, zzz,...

• A “feature” is a function which is uniform over all joint settings
except a few particulat ones on which it is high or low.

• For example, we might have fing(c1c2c3) which is 1 if the string is
’ing’ and 0 otherwise, and similar features for ’?ed’, etc.

• We can also define features when the inputs are continuous.
Then the idea of a cell on which it is active disappears, but we
might still have a compact parameterization of the feature.

Features as Micropotentials

• By exponentiating them, each feature function can be made into a
“micropotential”. We can multiply these micropotentials together
to get a clique potential.

• If we use a relatively small number of features, we can combine
them into clique potentials using only a reasonable number of
parameters but preserving the dependencies that we want.

• Example: a clique potential ψ(c1, c2, c3) could be expressed as

ψ(c1, c2, c3) = eθingfingeθ?edf?ed . . .

= exp





K
∑

i=1

θifi(c1, c2, c3)





• This is still a potential over 263 possible settings, but only uses K
parameters if there are K features.



Combining Features

• Each feature has a weight which tells us how important it is and
whether it increases or decreases the probability of the clique.

• This is a generalized exponential family distribution:

p(c1c2c3) ∝ exp{ θingfing(c1c2c3) + θ?edf?ed(c1c2c3)+

θqu?fqu?(c1c2c3) + θzzzfzzz(c1c2c3) + . . .}

• In general, the features may be overlapping, unconstrained
indicators of any function of the clique variables:

ψc(xc) ≡
∏

i∈IC

exp{θifi(xCi)}

= exp







∑

i∈IC

θifi(xCi)







• How can we combine feature into a probability model?

Feature Based Model

• We can multiply these clique potentials as usual:

p(x|θ) =
1

Z(θ)

∏

C

ψC(xC)

=
1

Z(θ)

∏

C

exp







∑

i∈IC

θifi(xCi)







=
1

Z(θ)
exp







∑

C

∑

i∈IC

θifi(xCi)







• However, in general we can forget about associating features with
cliques and just use a simplified form:

p(x|θ) =
1

Z(θ)
exp

{

∑

i

θifi(xCi)

}

• This is just our friend the exponential model, with the features as
sufficient statistics! We don’t really need the graphical model at all.

Review: Maximum Likelihood

`(θ;D) =
∑

x

n(x) log p(x|θ)

=
∑

x

n(x)

(

∑

i

θifi(x) − logZ(θ)

)

=
∑

x

n(x)
∑

i

θifi(x) −N logZ(θ)

∂`

∂θi
=
∑

x

n(x)fi(x) −N
∂

∂θi
logZ(θ)

=
∑

x

n(x)fi(x) −N
∑

x

p(x|θ)fi(x)

⇒
∑

x

p(x|θ)fi(x) =
∑

x

n(x)

N
fi(x) =

∑

x

p̄(x)fi(x)

Derivative of log partition function is the expectation of the feature.

At ML estimate, model expectations match empirical feature counts.

Maximum Entropy

• We can approach the modeling problem from an entirely different
point of view. Begin with some fixed feature expectations:

∑

x

p(x)fi(x) = αi

• Assuming expectations are consistent, there may exist many
distributions which satisfy them. Which one should we select?
The most uncertain or flexible one:
i.e. the one with maximum entropy.

• This yields a new optimization problem:

max H[p(x)] = −
∑

x

p(x) log p(x)

subject to
∑

x

p(x)fi(x) = αi
∑

x

p(x) = 1



Solution to the MaxEnt Problem

• To solve the maxent problem, we use Lagrange multipliers:

L = −
∑

x

p(x) log p(x) −
∑

i

θi

(

∑

x

p(x)fi(x) − αi

)

− µ

(

∑

x

p(x) − 1

)

∂L

∂p(x)
= 1 + log p(x) −

∑

i

θifi(x) − µ

p∗(x) = eµ−1 exp

{

∑

i

θifi(x)

}

Z(θ) = e1−µ =
∑

x

exp

{

∑

i

θifi(x)

}

p(x|θ) =
1

Z(θ)
exp

{

∑

i

θifi(x)

}

• So feature constraints + maxent implies exponential family.

• Problem is convex, so solution is unique.

Constraints from Data

• Where do the constraints αi come from?

• Just as before, measure the empirical counts on the training data:

αi =
∑

x

n(x)

N
fi(x) =

∑

x

p̄(x)fi(x)

• This also ensures consistency automatically.

• Known as the “method of moments”. (c.f. law of large numbers)

• We have seen a case of convex duality:
In one case, we assume exponential family and show that ML
implies feature expectations match observed counts.
In the other case, we assume model expectations must match
empirical feature counts and show that maxent implies exponential
family distribution.

Geometric Interpretation
Define two submanifolds on
the probability simplex p(x).

The first is E , the set of all
exponential family
distributions based on a
particular set of features fi(x).

The second is M, the set of
all distributions that satisfy the
feature expectation
constraints.

They intersect at a single
distribution pM , the maxent,
maximum likelihood
distribution.

A generalized Pythagorean
theorem holds for cross
entropies.

M

E

pM

p

q

E =

{

p(x) :
1

Z(θ)
exp

{

∑

i

θifi(x)

}}

M =

{

p(x) :
∑

x

p(x|θ)fi(x) =
∑

x

n(x)

N
fi(x) =

∑

x

p̄(x)fi(x)

}

KL[q‖p] = KL[q‖pM ] + KL[ pM‖p ]

KL Divergence Interpretations

• The generalized Pythagorean theorem allows us to interpret maxent
and ML models in a very succinct way:

KL[q‖p] = KL[q‖pM ] + KL[ pM‖p ]

• The maxent problem (actually the generalization of it to any
reference distribution h(x) beyond the uniform) is:

min
q

KL[q‖h] subj.to. q ∈ M

in other words, find the distribution q to which h is closest, which
still respects the moment constraints.

• The ML problem, given empirical counts p̃ is:

min
p

KL[p̃‖p] subj.to. p ∈ E

in other words, find the distribution closest to p̃ which is still in the
exponential family.



Conditional MaxEnt Models

• So far we have focussed on maxent models for density estimation
(unsupervised learning).

• We can also formulate such models for classification and regression
(conditional density estimation).

• For classification, the simplest model is:

p(c|x) =
exp
∑

i θcifi(x)
∑

c′ exp
∑

i θc′ifi(x)

where each class gets its own set of weights θci over the features
and we do the classification using softmax.

• If we use the “identity features” fi(x) = xi then this is exactly
equivalent to the logistic regression model we saw before.

• The model above is like doing logistic regression on the features.
Now features can be very complex, nonlinear functions of the data.

More Complex Models

• We can extend this modeling idea to more complex conditional
maxent models, for example the maximum entropy markov model.
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• The joint distribution is now a conditional model:

p(sT1 |x
T
1 ) =

∏

t

p(st|st−1, ft(x
T
1 ))

• The features ft can be very nonlocal functions of the underlying
input sequence, for example they can consult things in the past and
in the future.

Generative Model Interpretation

• MaxEnt models are a generalized version of expoential family
models, and so they can be thought of as generative models which
assign probability distribution to joint settings of the features fi(x).

• But they are not generative models of the original inputs x,
because the features may be very complicated, nonlinear functions.

• Futhermore, it may be possible to generate joint feature settings
which do not correspond to any possible input x.

• For example, what if our generative model gives
fing(c1, c2, c3) = 1 and f?ed(c1, c2, c3) = 1 ?


