Baum-Welch Algorithm: EM Training

Lecture 18:

Hidden Markov Model Learning

Sam Roweis

1. Intuition: if only we knew the true state path then ML parameter estimation would be trivial (MM1 on x, conditional on y).
2. But: can estimate state path using inference recursions.
3. Baum-Welch algorithm (special case of EM): estimate the states, then compute params, then re-estimate states, and so on ...
4. This works and we can prove that it always improves likelihood.
5. However: finding the ML parameters is NP complete, so initial conditions matter a lot and convergence is hard to tell.

Reminder: HMM Graphical Model

- Hidden states $\left\{x_{t}\right\}$, outputs $\left\{\mathbf{y}_{t}\right\}$

Joint probability factorizes:

$$
\begin{aligned}
\mathrm{P}(\{x\},\{\mathbf{y}\}) & =\prod_{t=1}^{T} \mathrm{P}\left(x_{t} \mid x_{t-1}\right) \mathrm{P}\left(\mathbf{y}_{t} \mid x_{t}\right) \\
& =\pi_{x_{1}} \prod_{t=1}^{T-1} S_{x_{t}, x_{t+1}} \prod_{t=1}^{T} A_{x_{t}}\left(\mathbf{y}_{t}\right)
\end{aligned}
$$

- We saw efficient recursions for computing
$L=\mathrm{P}(\{\mathbf{y}\})=\sum_{\{x\}} \mathrm{P}(\{x\},\{\mathbf{y}\})$ and $\gamma_{i}(t)=\mathrm{P}\left(x_{t}=i \mid\{\mathbf{y}\}\right)$.

Parameter Estimation using EM

- $S_{i j}$ are transition probs; state j has output distribution $A_{j}(\mathbf{y})$

$$
\begin{aligned}
\mathrm{P}\left(x_{t+1}=j \mid x_{t}=i\right) & =S_{i j} \quad \mathrm{P}\left(x_{1}=j\right)=\pi_{j} \\
\mathrm{P}\left(\mathbf{y}_{t}=y \mid x_{t}=j\right) & =A_{j}(y)
\end{aligned}
$$

- Complete log likelihood:

$$
\begin{aligned}
& \log p(x, y)=\log \left\{\pi_{x_{1}} \prod_{t=1}^{T-1} S_{x_{t}, x_{t+1}} \prod_{t=1}^{T} A_{x_{t}}\left(\mathbf{y}_{t}\right)\right\} \\
&=\log \left\{\prod_{i} \pi_{i}^{\left[x_{1}^{i}\right]} \prod_{t=1}^{T-1} \prod_{i j} S_{i j}^{\left[x_{t}^{i}, x_{t+1}^{j}\right]} \prod_{t=1}^{T} \prod_{k} A_{k}\left(\mathbf{y}_{t}\right)^{\left[x_{t}^{k}\right]}\right\} \\
&=\sum_{i}\left[x_{1}^{i}\right] \log \pi_{i}+\sum_{t=1}^{T-1} \sum_{i j}\left[x_{t}^{i}, x_{t+1}^{j}\right] \log S_{i j}+\sum_{t=1}^{T} \sum_{k}\left[x_{t}^{k}\right] \log A_{k}\left(\mathbf{y}_{t}\right)
\end{aligned}
$$

where the indicator $\left[x_{t}^{i}\right]=1$ if $x_{t}=i$ and 0 otherwise

- For EM, we need to compute the expected complete log likelihood.
- The expected complete log likelihood requires
$\gamma_{i}(t)=<\left[x_{t}^{i}\right]>\quad$ and $\quad \xi_{i j}(t)=<\left[x_{t}^{i}, x_{t+1}^{j}\right]>$
- So in the E-step we need to compute both $\gamma_{i}(t)=p\left(x_{t}=i \mid\{\mathbf{y}\}\right)$ and $\xi_{i j}(t)=p\left(x_{t}=i, x_{t+1}=j \mid\{\mathbf{y}\}\right)$.
- We already know how to compute $\gamma_{i}(t)$ using α and β recursions.

We can compute $\xi_{i j}(t)$ the same way (recall BP):

$$
\begin{aligned}
\xi_{i j}(t) & =p\left(x_{i t}, x_{j t+} \mid\{\mathbf{y}\}\right)=p\left(x_{i t} \mid\{\mathbf{y}\}\right) p\left(x_{j t+} \mid x_{i t},\{\mathbf{y}\}\right) \\
& =p\left(x_{i t}, y_{1}^{t} \mid y_{t+1}^{T}\right) p\left(x_{j t+} \mid x_{i t}, y_{t+1}^{T}\right) / p\left(y_{1}^{t} \mid y_{t+1}^{T}\right) \\
& =\frac{p\left(x_{i t}, y_{1}^{t}\right) p\left(y_{t+1}^{T} \mid x_{i t}, y_{1}^{t}\right)}{p\left(y_{1}^{t} \mid y_{t+1}^{T}\right) p\left(y_{t+1}^{T} \mid x_{j t+1}^{T}\right)} \frac{\left.x_{i t}\right) p\left(x_{j t+} \mid x_{i t}\right)}{p\left(y_{t+1}^{T} \mid x_{i}=t\right)} \\
& =\frac{p\left(x_{i t}, y_{1}^{t}\right) p\left(y_{t+1}^{T} \mid x_{i t}\right)}{p\left(y_{1}^{T}\right)} \frac{p\left(y_{t+1} \mid x_{j t+}\right) p\left(y_{t+2}^{T} \mid x_{j t+}\right) p\left(x_{j t+} \mid x_{i t}\right)}{p\left(y_{t+1}^{T} \mid x_{i}=t\right)} \\
& =\alpha_{i}(t) A_{j}\left(y_{t+1}\right) S_{i j} \beta_{j}(t+1) / L
\end{aligned}
$$

- Multiple observation sequences: can be dealt with by averaging numerators and averaging denominators in the ratios given above.
- Initialization: mixtures of Naive Bayes or mixtures of Gaussians
- Numerical scaling: the probability values that the bugs carry get tiny for big times and so can easily underflow. Good rescaling trick:

$$
\rho_{t}=\mathrm{P}\left(\mathbf{y}_{t} \mid \mathbf{y}_{1}^{t-1}\right) \quad \alpha(t)=\tilde{\alpha}(t) \prod_{t^{\prime}=1}^{t} \rho_{t^{\prime}}
$$

or represent all probabilities as logs and use logsum

M-step: New Parameters are just Ratios of Frequency Counts

- Initial state distribution: expected \#times in state i at time 1:

$$
\hat{\pi}_{i}=\gamma_{i}(1)
$$

- Expected \#transitions from state i to j which begin at time t :

$$
\xi_{i j}(t)=\alpha_{i}(t) S_{i j} A_{j}\left(\mathbf{y}_{t+1}\right) \beta_{j}(t+1) / L
$$

so the estimated transition probabilities are:

$$
\hat{S}_{i j}=\sum_{t=1}^{T-1} \xi_{i j}(t) / \sum_{t=1}^{T-1} \gamma_{i}(t)
$$

- The output distributions are the expected number of times we observe a particular symbol in a particular state:

$$
\hat{A}_{j}\left(y_{0}\right)=\sum_{t \mid \mathbf{y}_{t}=y_{0}} \gamma_{j}(t) / \sum_{t=1}^{T} \gamma_{j}(t)
$$

M-step for Profile HMMs

- The emission probabilities $A_{j}()$ for match and insert states and the initial state distribution π (for m_{1}, i_{1}, d_{1}) are updated exactly as in the regular M-step.
- The expected \#transitions from state i to j which begin at time t are different when j is a delete state:

$$
\xi_{i j}(t)=\alpha_{i}(t) S_{i j} \beta_{j}(t) / L
$$

- Given this change, the updates to the transition parameters is the same as in the normal M -step.

Symbol HMM Example

- Character sequences (discrete outputs)

Mixture HMM Example

- Geyser data (continuous outputs)

