
Lecture 15:

Belief Propagation on Trees

Sam Roweis

March 1, 2004

Reminder: Elimination for Inference

• We want to be able to condition on some “evidence” xE (observed
nodes) and compute the posterior probabilities of some “query”
nodes xF while marginalizing out “nuisance” nodes xR.

• For a single node posterior (i.e. xF is a single node), there was a
simple, efficient algorithm based on eliminating nodes.

• Notation: x̄i is the value of evidence node xi.

• The algorithm, called elimination, required a node ordering to be
given, which told it which order to do the summations in.

1X

2X

3X

X 4

X 5

X6

(a)

1X

2X

3X

X 4

X 5

X6

(b)

1X

2X

3X

X 4

X 5

(c)

1X

2X

3X

X 4

(d)

1X

2X

3X

(e)

1X

2X

(f)

1X

(g)

Multiple Queries

• The Elimination algorithm we described was query based: given
the single node marginal to compute (the last item in the ordering),
it efficiently summed out or conditioned on all other variables.

• But what if we want to do multiple inferences?
For example, during learning, constraint satisfaction, planning.

Efficient Multi-Elimination

• We could run Elimination once for each marginal, but this
would be extremely inefficient since most of the calculations would
be duplicated.

• We want an algorithm that reuses work efficiently to compute all
marginals (or pairwise marginals) given evidence

• We do not want to duplicate work unecessarily.
We want to reuse calculations as best as possible.

• This needs:
1) A plan for which intermediate factors to compute in what order.
2) Some storage for these intermediate factors.

Tree-Structured Graphical Models

• For now, we will focus on tree-structured graphical models.

• Trees are an important class; e.g. Hidden Markov Models and
continuous State Space Models are trees.

• Exact inference on trees is the basis for the junction tree algorithm

which solves the general exact inference problem for directed acyclic
graphs and for many approximate algorithms which can work on
intractable or cyclic graphs.

• Directed and undirected trees make exactly same conditional
independence assumptions, so we cover them together.

(a) (b) (c)

Elimination on Trees

• Recall basic structure of Eliminate:

1. Convert directed graph to undirected by moralization.

2. Chose elimination ordering with query node last.

3. Place all potentials on active list.

4. Eliminate nodes by removing all relevant potentials, taking
product, summing out node and placing resulting factor back
onto potential list.

• What happens when the original graph is a tree?

1. No moralization is necessary.

2. There is a natural elimination ordering with query node as root.
(Any depth first search order.)

3. All subtrees with no evidence nodes can be ignored (since they
will leave a potential of unity once they are eliminated).

Elimination on Trees

• Now consider eliminating node j which is followed by i in the order.

• Which nodes appear in the potential created after summing over j?
– nothing in the subtree below j (already eliminated)
– nothing from other subtrees, since the graph is a tree
– only i, from ψij which relates i and j

• Call the factor that is created mji(xi),
and think of it as a message that
j passes to i when j is eliminated.

• This message is created by
summing over j the product of
all earlier messages mkj(xj)

sent to j as well as ψEj (xj)

(if j is an evidence node).

i

j

to root
i

j

m ji ()xi

mkj ()xj mlj ()xj

k l

(a) (b)

Eliminate = Message Passing

• On a tree, Eliminate can be thought of as passing messages up
to the query node at the root from the other nodes at the leaves or
interior. Since we ignore subtrees with no evidence, observed
(evidence) nodes at always at the leaves.

• The message mji(xi) is created when we sum over xj

mji(xi) =
∑

xj

ψE(xj)ψ(xi, xj)
∏

k∈c(j)

mkj(xj)

• At the final node xf , we obtain the answer:

p(xf |x̄E) ∝ ψE(xf)
∏

k∈c(f)

mkf (xf)

• If j is an evidence node, ψE(xj) = δ(xj, x̄j), else ψE(xj) = 1.

• If j is a leaf node in the ordering, c(j) is empty, otherwise c(j) are
the children of j in the ordering.

Messages are Reused in MultiElimination

• Consider querying x1, x2, x3 and x4 in the graph below.

• The messages needed for x1, x2, x4 individually are shown (a-c).

• Also shown in (d) is the set of messages needed to compute all
possible marginals over single query nodes.

m32 ()x2 m42 ()x2

m21 ()x1

(a)

3X

2X

4X

1X

m32 ()x2 m42 ()x2

(b)

m12 ()x2

3X

2X

4X

1X

m32 ()x2

m24 ()x4

(c)

m12 ()x2

3X

2X

4X

1X

m32 ()x2

m23 ()x3

m12 ()x2

m42 ()x2

m24 ()x4

m21 ()x1

(d)

3X

2X

4X

1X

• Key insight: even though the naive approach (rerun Elimination)
needs to compute N2 messages to find marginals for all N query
nodes, there are only 2N possible messages.

• We can compute all possible messages in only double the amount
of work it takes to do one query.

• Then we take the product of relevant messages to get marginals.

Computing All Possible Messages

• How can we compute all possible messages efficiently?

• Idea: respect the following Message-Passing-Protocol:
A node can send a message to a neighbour only when it has

received messages from all its other neighbours.

• Protocol is realizable: designate one node (arbitrarily) as the root.
Collect messages inward to root then distribute back out to leaves.

• Once we have the messages, we can compute marginals using:

p(xi|x̄E) ∝ ψE(xi)
∏

k∈c(i)

mki(xi)

• Remember that the directed tree on which we pass messages might
not be same directed tree we started with.

• We can also consider “synchronous” or “asynchronous” message
passing nodes that respect the protocol but don’t use the
Collect-Distribute schedule above. (Must prove this terminates.)

Belief Propagation (Sum-Product) Algorithm

• Choose a root node (arbitrarily or as first query node).

• If j is an evidence node, ψE(xj) = δ(xj, x̄j), else ψE(xj) = 1.

• Pass messages from leaves up to root and then back down using:

mji(xi) =
∑

xj

ψE(xj)ψ(xi, xj)
∏

k∈c(j)

mkj(xj)

• Given messages, compute marginals using:

p(xi|x̄E) ∝ ψE(xi)
∏

k∈c(i)

mki(xi)

i

j

k

i

j

k (a) (b)

��
��
� �

��
��
	

� �
 �

� ��
��
� �
� �
 �

� �
��

��
��

��
�	

� �
� ��

 !
" ��

�
��
##
� �
	 ��
$ �

� ��
 !

" ��
�

% � �
	 ��

& �
	� �

� $
�

� ��
' !

�
��

�(
�	
�)

* �
+��

*#

' �

� ��
��
� �
� �
 �

� ��
' !

,- �

. / �
� ,

�. /
�0 �

. / $
1 . / �

� ��
' 2!

,- �

. / �
� ,

�. /
�

��
##
� �
	 �' $

3 �
� ��

4 !
" �3
� 5'

��
##
� �
	 �3$

4 �
��
��

)� �
�*
+� �

3$'
�

% � �
	 ��

& �
	� �

' $3
�

��
��

)� �
�*
+� �

' $3
�

� ��
4 !

" �3
� 5'

% � �
	 ��

& �
	� �

3$4
�

��
��

)� �
�*
+� �

3$'
�

6 7/ �
. / �

�
8:9 ;�
,- �

. 7�
, �.
/ $.

7�
<>
= ?

@ A7 B
C/
6 = 7
�. 7

��

��
�(
�	
�)

* �
+��

*#

' �

D �.
/ �

E ,
- �.

/ �
<
7?

@ A/ B
6 7/ �

. / �

i j

k

i j

k

F G
H I
JHK

LM N
OM

P QO
HP

HK L
NLM
RK

RS L
T H

��
��
� �
��

��
	 N
O UR

VM L
TP

S RV
NL
V HH

� ��
$W
�X

YT H
NO U

RVM L
TP

ZRV
[G
S RV

NK \
]T R

M]H
RSV

RRL
K R
^H _

NK
^L

T JG
ZH

T N`
HO
HS L

��
��
��

��
�	

JK G
QH]
Ma H

^X
F

]NO
O L
R �

�##
� �
]

NJG
HG

P HG
GN U

HG
LR

b R
ZM
K Z
NV ^

SV R
P L

T H
O HN

`HG
LR
LT H

V RR
LX

F G
JcG

H I
JHK

L]
NOO
LR

% � �
	 ��

& �
	�

]N
JGH
G
P HG
GN U

HG
LR

b R
ZR

JL
ZNV

^S
V R

P L
T H
V RR

LL
RL

T H
O HN

`HGX
FS L
HV
LT H

GH
]NO
O G

T N`
H

V HL
JVK

H^ _
LT H

GMK
UO HL

RK
P NV

UMK
NO G

]NK
cH

]R
P Q
JLH

^O
R]N

OO \
NL
HN]

TK
R^H
X

Computing Joint Pairwise Posteriors

• We can also easily compute the joint pairwise posterior distribution
for any pair of connected nodes xi, xj.

• To do this, we simply take the product of all messages coming into
node i (except the message from node j), all the messages coming
into node j (except the message from node i) and the potentials
ψi(xi), ψj(xj), ψij(xi, xj).

• The posterior is proportional to this product:

p(xi, xj|x̄E) ∝ ψE(xi)ψ
E(xj)ψ(xi, xj)

∏

k 6=j∈c(i)

mki(xi)
∏

`6=i∈c(j)

m`j(xj)

• These joint pairwise posteriors cover all the maximal cliques in the
tree, and so those are all we need to do learning.

• Inference of other pairwise or higher order joint posteriors is
possible, but more difficult.

Maximizing instead of Summing

•Elimination and Belief Propagation both summed over
all possible values of the marginal (non-query, non-evidence) nodes
to get a marginal probability.

• What if we wanted to maximize over the non-query, non-evidence
nodes to find the probabilty of the single best setting consistent
with any query and evidence?

max
x

p(x) = max
x1

max
x2

max
x3

max
x4

max
x5

p(x1)p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x3)p(x6|x2,x5)

= max
x1

p(x1) max
x2

p(x2|x1) max
x3

p(x3|x1) max
x4

p(x4|x2) max
x5

p(x5|x3)p(x6|x2,x5)

• This is known as the maximum a-posteriori or MAP configuration.

• It turns out that (on trees), we can use an algorithm exactly like
belief-propagation to solve this problem.

1X

2X

3X

X 4

X 5

X6

Sum-Product, Max-Product and Semirings

• Why can we use the same trick for MAP as for marginals?

• Because multiplication distributes over max as well as sum:

max(ab, ac) = a max(b, c)

• Formally, both the “sum-product” and “max-product” pair are
commutative semirings.

• It turns out that the “max-sum” pair is also a semiring:

max(a + b, a + c) = a + max(b, c)

which means we can do MAP computations in the log domain:

max
x

p(x) = max
x

∏

i

p(xi|xπi) = max
x

log p(x) = max
x

∑

i

log p(xi|xπi)

Max-Product Algorithm

• Choose a root node arbitrarily.

• If j is an evidence node, ψE(xj) = δ(xj, x̄j), else ψE(xj) = 1.

• Pass messages from leaves up to root using:

mmax
ji (xi) = max

xj

ψE(xj)ψ(xi, xj)
∏

k∈c(j)

mmax
kj (xj)

• Remember which choice of xj = x∗j yielded maximum.

• Given messages, compute max value using any node i:

max
x

pE(x|E) = max
xi

ψE(xi)
∏

k∈c(i)

mki(xi)

• Retrace steps from root back to leaves recalling best x∗j to get the

maximizing argument (configuration) x
∗.

