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Probabilistic Inference

• Partition the random variables in a domain X into three disjoint
subsets, xE,xF ,xR. The general probabilistic inference problem is
to compute the posterior p(xF |xE) over query nodes xF .

• This involves conditioning on evidence nodes xE and
integrating (summing) out marginal nodes xR.

• If the joint distribution is represented as a huge table, this is trivial:
just select the appropriate indicies in the columns corresponding to
xE based on the values, sum over the columns corresponding to
xR, and renormalize the resulting table over xF .

• If the joint is a known continuous function this can sometimes be
done analytically. (e.g. Gaussian: eliminate rows/cols
corresponding to xR; apply conditioning formulas for p(xF |xE)).

• But what if the joint distribution over X is represented by a
directed or undirected graphical model?

Simple Case: Bayes Rule

• For simple models, we can derive the inference formulas by hand
using Bayes rule (e.g. responsibility in mixture models).
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a) p(x, y) = p(x)p(y|x)

b) p(y|x)

c) p(x|y) =
p(x)p(y|x)∑
x p(x)p(y|x)

This is called “reversing the arrow”.

• In general, the calculation we want to do is:

p(xF |xE) =

∑
xR

p(xE,xF ,xR)
∑

xF ,xR
p(xE,xF ,xR)

• Q: Can we do these sums efficiently?
Can we avoid repeating unecessary work each time we do inference?
A: Yes, if we exploit the factorization of the joint distribution.
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The key is to factor and then apply the distributive law.

p(x1|x̄6) = p(x1, x̄6)/p(x̄6)

= p(x1, x̄6)/
∑

x1
′

p(x1
′, x̄6)

p(x1, x̄6) =
∑

x2

∑

x3

∑

x4

∑

x5

p(x1)p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x3)p(x̄6|x2,x5)

= p(x1)
∑

x2

p(x2|x1)
∑

x3

p(x3|x1)
∑

x4

p(x4|x2)
∑

x5

p(x5|x3)p(x̄6|x2,x5)

= p(x1)
∑

x2

p(x2|x1)
∑

x3

p(x3|x1)Φ5(x2,x3)
∑

x4

p(x4|x2)

= p(x1)
∑

x2

p(x2|x1)Φ4(x2)
∑

x3

p(x3|x1)Φ5(x2,x3)

= p(x1)
∑

x2

p(x2|x1)Φ4(x2)Φ3(x1,x2)

= p(x1)Φ2(x1)



Single Node Posteriors

• For a single node posterior (i.e. xF is a single node), there is a
simple, efficient algorithm based on eliminating nodes.

• Notation: x̄i is the value of evidence node xi.

• The algorithm, called elimination, requires a node ordering to be
given, which tells it which order to do the summations in.

• In this ordering, the query node must appear last.
Graphically, we’ll remove a node from the graph once we sum it out.
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Evidence Potentials

• Elimination also uses a bookeeping trick, called evidential functions:

g(x̄i) =
∑

xi

g(xi)δ(xi, x̄i)

where δ(xi, x̄i) is 1 if xi = x̄i and 0 otherwise.

• This trick allows us to treat conditioning in the same way as we
treat marginalization. So everything boils down to doing sums:

p(xF |x̄E) = p(xF , x̄E)/p(x̄E)

p(xF , x̄E) =
∑

xR

∑

xE

p(xF ,xE,xR)δ(xE, x̄E)

p(x̄E) =
∑

xR

∑

xE

∑

xF

p(xF ,xE,xR)δ(xE, x̄E)

• We just pick an ordering and go for it...

Elimination Algorithm
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Above, Ti denotes i plus all other nodes referenced by potentials on i

Algorithm Details

• At each step we are trying to remove the current variable in the
elimination ordering from the distribution.
For marginal nodes this sums them out, for evidence nodes this
conditions on their observed values using the evidential functions.

• Each step in Update performs a sum over a product of potential
functions. Potentials can be original functions p(xi|xπi), evidential
functions δ(xi, x̄i) or intermediate potentials mi.

• The algorithm terminates when we reach the query node,
which always appears last in the ordering.

• We renormalize what we have left to get the final result:
p(xF |xE)

• For undirected models, everything is the same except the
initialization phase uses the clique potentials instead of the
parent-conditionals.



Marginalization without Evidence

• Marginalization of joint distributions represented by graphical
models is a special case of probabilistic inference.

• To compute the marginal p(xi) of a single node, we set it to be the
query node and set the evidence set to be empty.

• In directed models, we can ignore all nodes downstream from the
query node, and marginalize only the part of the graph before it.

• If the node has no parents, we can read off its marginal directly.

• In undirected models, we need to do the full computation:
compute p(xi)/Z using elmination and then normalize in the last
step of elmination to get Z.
(We can reuse Z later if we want to save work).

Efficiency Trick in Directed Elimination

• In directed models, we often know that a certain sum must
evaluate to unity, since it is a conditional probability.

• For example, consider the term Φ4(x2) in our six node example:

Φ4(x2) =
∑

x4

p(x4|x2) ≡ 1

• We can’t use this trick in undirected models, because there are no
guarantees about what clique potentials sum to.

Node Elimination

• The algorithm we presented is really a way of eliminating nodes
from a graph one by one. For undirected graphs:

foreach node xi in ordering I:
connect all the neighbours of xi
remove xi from the graph

end

• The removal operation requires summing out xi
(or conditioning on observed evidence for xi).

• Summing out xi leaves a function involving all its previous
neighbours and thus they become connected by this step.

• The original graph, augmented by all the added edges is now a
triangulated graph. (Reminder: triangulated means that every cycle
of length >3 contains a chord, ie an edge not on the cycle but
between two nodes in the cycle.)
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Added Edges == Triangulation
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It is easy to check if a graph is tri-
angulated in linear time. It is easy to
triangulate a non-triangulated graph.
But it is very hard to do so in a way
that induces small clique sizes.
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Moralization

• For directed graphs, the parents may not be explicitly connected,
but they are involved in the same potential function p(xi|xπi).

• Thus to think of Elimination as a node removal algorithm, we
first must connect all the parents of every node and the drop the
directions on the links.

• This step is known as “Moralization”.
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