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Undirected Models

• In directed models, each node plus its parents form a clique, and
the clique potential are p(xi|xπi).

• In undirected models, we can have arbitrary cliques C, with
arbitrary postive potentials ψC on each one.

• But this flexibility comes at a cost: learning in fully observed
directed models is trivial, but learning in fully observed undirected
models is not.

• Reason? The normalization factor (partition function) Z:

P(X) =
1

Z

∏

cliques c

ψc(xc) Z =
∑

X

∏

cliques c

ψc(xc)

Which cliques?

• In general, an undirected model can place potentials on any subset
of the cliques of the graph.

• Not all cliques need to be have potentials, and not all potentials
need to be over maximal cliques.

• But in general, placing one potential on each maximal clique of the
graph can represent any set of potentials.
Why? We can always set the potential on a maximal clique to the
product of all the potentials on cliques which were contained in
that maximal clique. We can always set the potential on cliques we
wanted to leave out to unity.

Discrete Nodes

• Consider undirected models with all discrete nodes.

• Now there are just a finite number of possible joint settings of X,
and our model is defined as:

P(x|θ) =
1

Z(θ)

∏

c

ψc(xc|θc) Z(θ) =
∑

x

∏

c

ψc(xc|θc)

where θ = {θc}.

• For a particular dataset D = {x1,x2, . . . ,xN}, we can count the
number of times any joint configuration x has been observed:

n(x) =
∑

n

δ(x,xn)

• We can also count the number of times a clique configuration
appears (using xc as the subvector over the variables in clique c):

n(xc) =
∑

n

δ(xc,x
n
c ) =

∑

xc̃

n([xc,xc̃])



Log Likelihood

• In terms of the counts, the log likelihood is given by:

p(D|θ) =
∏

n

∏

x

p(x|θ)δ(x,x
n)

log p(D|θ) =
∑

n

∑

x

δ(x,xn) log p(x|θ)

` =
∑

x

n(x) log

(

1

Z

∏

c

ψc(xc)

)

=
∑

c

∑

xc

n(xc) logψc(xc) −N logZ

• So the clique counts n(xc) are the sufficient statistics for our
undirected model.

• But now there is a nasty logZ in the likelihood.

Conditions on Clique Marginals

• Let’s calculate the derivative of the log likelihood with respect to
the value of one clique potential at one setting of the clique
variables. Next, we set this derivative to zero, trying to find the
optimal parameters:

∂`

∂ψc(xc)
=
n(xc)

ψc(xc)
−N

p(xc)

ψc(xc)

• Thus, for the maximum likelihood parameters, we know that:

p∗ML(xc) =
n(xc)

N
= q(xc)

In other words, at the maximum likelihood setting of the
parameters, for each clique, the model marginals must be equal to

the observed marginals.

• This doesn’t tell us how to get the ML parameters, it just gives us
a condition that must be satisfied when we have them.

A Game

There is a table (with all positive numbers that sum to one).
I show you the row sums and the column sums.

x

y

z

x

y

zΣ p(x,y)

Can you find the table? (Easy).
Can you find the table if I force some spots to be zero? (Harder).
Can you find the table if instead of row sums and column sums I tell
you the sums of arbitrary subsets of the elements?

Iterative Proportional Fitting (IPF)

• Let’s go back to the derivative of the likelihood:
∂`

∂ψc(xc)
=
n(xc)

ψc(xc)
−N

p(xc)

ψc(xc)

• From this we can derive another relationship:
n(xc)/N

ψc(xc)
=

q(xc)

ψc(xc)
=
p(xc|θ)

ψc(xc)

in which ψc appears implicitly in the model marginal pc(xc|θ).

• To solve for ψc is hard, because it appears on both sides of this
implicit nonlinear equation.

• The idea of IPF is to hold ψc fixed on the right hand side (both in
the numberator and denominator) and solve for it on the left hand
side. We cycle through all cliques, then iterate:

ψ
(t+1)
c (xc) = ψ

(t)
c (xc)

q(xc)

p(t)(xc)



Properties of IPF Updates

• The IPF updates have two amazing properties:

1. At each iteration the model marginal p(t+1)(xc) is equal to the
observed marginal q(xc).

2. The partition function Z remains constant across all IPF updates.

• To show this, calculate the marginal:

p(t+1)(xc) =
∑

xc̃

p(t+1)(x)

=
Z(t)

Z(t+1)
q(xc)

Now sum both sides over xc, yielding:

1 · Z(t+1) = Z(t) · 1

and thus
p(t+1)(xc) = q(xc)

IPF as Coordinate Ascent

• We saw that the IPF iterations always achieve the conditions we
require at the ML parameter estimates.

• But how do we know if they will converge, and if so, if they always
increase the log likelihood?

• We can show that IPF is actually coordinate ascent in the log
likelihood, just like EM was.

• At any iteration, the derivative of the likelihood can be written as:

∂`

∂ψc(xc)
=
n(xc)

ψc(xc)
−N

p(t)(xc)

ψ
(t)
c (xc)

and if we evaluate this at ψ
(t+1)
c (xc) we find that the gradient is in

fact equal to zero.

KL Divergence View

• IPF can also be seen to be coordinate ascent in the likelihood using
the way of expressing likelihoods using KL divergences.

• First, we observe that maximizing the log likelihood is equivalent to
minimizing the KL divergence (cross entropy) from the observed
distribution to the model distribution:

max `⇔ minKL[q(x)‖p(x|θ)] =
∑

x

q(x) log
q(x)

p(x|θ)

• Next, we use a property of KL divergence based on the conditional
chain rule: p(x) = p(xa)p(xb|xa):

KL[q(xa,xb)‖p(xa,xb)] = KL[q(xa)‖p(xa)]+
∑

xa

q(xa)KL[q(xb|xa)‖p(xb|xa)]

IPF minimizes KL divergence

• Putting these two together, we see that:

KL[q(x)‖p(x|θ)] = KL[q(xc)‖p(xc|θ)]+
∑

xc

q(xc)KL[q(xc̃|xc)‖p(xc̃|xc, θ)]

But changing the clique potential has no effect on the conditional
distribution, so the second term in unaffected. To minimize the first
term, we set the marginal to the observed marginal, just as in IPF.

• In fact, we can interpret IPF updates as retaining the “old”
conditional probabilities p(t)(xc̃|xc) while replacing the “old”

marginal probability p(t)(xc) with the observed marginal q(xc).


