CSC412 - Example Midterm Test

2004
Time: 60 minutes
Worth: 25%

Name:
Student Number:

1 Short Answers

Complete the statements in the space given.

- When speaking of "i.i.d. data", "i.i.d." stands for
- In a directed tree, each node (except the root) has exactly \qquad -.
- Maximum likelihood structure learning in fully observed tree models involves solving a \qquad problem, for example using \qquad
algorithm.
- The key inequality used to lower bound the likelihood when deriving an EM algorithm is
\qquad inequality for convex functions.
- Consider a binary output y and some binary inputs $x_{i}, i=1 \ldots P$.

A "Noisy-OR" model for y with failure probabilities α_{i} corresponding to each input x_{i} is:
$p\left(y=1 \mid x_{1} \ldots x_{P}, \alpha_{1} \ldots \alpha_{P}\right)=$ \qquad

- In factor analysis the covariance of the posterior distribution over the latent variable given an observation is of the observation.

2 Maximum Likelihood: Poisson

As a reminder, the Poisson distribution over a positive integer (count) random variable i is defined by the following mass function for a single positive parameter $\lambda>0$.

$$
p(i)=e^{-\lambda} \frac{\lambda^{i}}{i!} \quad i=0,1, \ldots, \infty
$$

- Write the \log likelihood of a dataset i^{1}, \ldots, i^{N} in terms of λ.
- Find the maximum likelihood parameter λ in terms of i^{1}, \ldots, i^{N}.
- What are the sufficient statistics of a dataset i^{1}, \ldots, i^{N} for the Poisson distribtion?
- Of course, the distribution must normalize properly, and thus $\sum_{i=0}^{\infty} p(i)=1$.

Use this to derive an expression for $\sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!}$ in terms of λ.

- Calculate the mean and variance of i in terms of λ. (You may need the result: $\frac{\partial \lambda^{i}}{\partial \lambda}=\frac{i}{\lambda} \lambda^{i}$.)

3 Mixture of Gaussians Posteriors (20 points)

Consider a simple mixture of two one-dimensional Gaussians:

$$
\begin{aligned}
p(x) & =p(z=1) p(x \mid z=1)+p(z=2) p(x \mid z=2) \\
& =\alpha_{1} \frac{1}{\sqrt{2 \pi \sigma_{1}^{2}}} e^{-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}+\alpha_{2} \frac{1}{\sqrt{2 \pi \sigma_{2}^{2}}} e^{-\frac{\left(x-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}}
\end{aligned}
$$

Where $\sigma_{1}, \sigma_{2}>0 ; 0<\alpha_{1}, \alpha_{2}<1 ; \alpha_{1}+\alpha 2=1$.

- Using Bayes' rule, calculate the posterior $p(z=1 \mid x)$.
- In general, there may be more than one value of x for which $p(z=1 \mid x)=p(z=2 \mid x)$ (i.e. the posteriors over the two components are equal).

Write a quadratic formula $a x^{2}+b x+c=0$ that must be satisfied when $p(z=1 \mid x)=p(z=2 \mid x)$, expressing a, b, c in terms of $\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \alpha_{1}, \alpha_{2}$.

- If $\sigma_{1}^{2}=\sigma_{2}^{2}$, and $\mu_{1} \neq \mu_{2}$, what is the single value of x such that $p(z=1 \mid x)=p(z=2 \mid x)$?
- Under what conditions are there infinitely many values of x such that $p(z=1 \mid x)=p(z=2 \mid x)$?
- Under what conditions are there no values of \mathbf{x} that make $p(z=1 \mid x)=p(z=2 \mid x)$?
- If $a \neq 0$ describe the conditions under which there is only only a single value of x at which the posteriors are equal.

4 EM Algorithm for Unobserved Naive Bayes

Consider the following "unobserved naive Bayes" model which has P observed binary variables $x_{i} \in\{0,1\}$
$(i=1 \ldots P)$, and an unobserved discrete latent variable $z \in\{1,2, \ldots, K\}$.

$$
\begin{aligned}
p(z=k) & =a_{k} \\
p\left(x_{i}=1 \mid z=k\right) & =b_{i k} \quad \forall i
\end{aligned}
$$

Below you will derive the EM algorithm for maximum likelihood learning in this model.

- Write the complete data \log likelihood for a dataset with N observations x_{i}^{n} and latent variables $z^{n}, i=1 \ldots P$, $n=1 \ldots N$.
- Calculate the marginal (incomplete) data log likelihood for some observed data $x_{i}^{n}, i=1 \ldots P, n=1 \ldots N$.
- E-step: calculate the posterior $p\left(z=k \mid x_{1}, \ldots, x_{P}\right)$ of the latent variable given the binary observations.
- Calculate the expected complete data \log likelihood for the observed data $x_{i}^{n}, i=1 \ldots P, n=1 \ldots N$ under a distribution $p\left(z^{n}=k \mid x_{1}^{n} \ldots x_{P}^{n}\right)=q_{k}^{n}$.
- M-step: For a fixed q_{k}^{n}, and fixed observed data x_{i}^{n}, find the parameter settings a_{k}^{*} and $b_{i k}^{*}$ which maximize the expected complete \log likelihood. Be sure to enforce the normalization constraint $\sum_{k} a_{k}=1$.
- Assume we have some observed data $x_{i}^{n}, i=1 \ldots P, n=1 \ldots N$ and we want to fit this model using the EM algorithm. Using the results of the previous subquestions, write down the $E-$ step update for q_{k}^{n} and the $M-$ step updates for a_{k} and $b_{i k}$.
Make sure the updates you write don't contain unspecified quantities.
You should be able to turn your updates into code without any further derivations.

