1. Prove or disprove:

- $\operatorname{Tr}(|A+B|) \leq \operatorname{Tr}(|A|)+\operatorname{Tr}(|B|)$.
- For A, B Hermitian, $\sqrt{A \otimes B}=\sqrt{A} \otimes \sqrt{B}$.
- $A \geq B, C \geq D$ imply $A C \geq B D$.
- If $A \geq 0$ then so is: (i) A^{-1} (if exists), (ii) $C^{\dagger} A C$ for any operator C.

2. Find Schmidt decompositions for:

- $\frac{1}{2}(|00\rangle+|10\rangle-|10\rangle+|11\rangle)$,
- $\frac{1}{\sqrt{6}}|00\rangle+\frac{1}{\sqrt{3}}|01\rangle+\frac{1}{\sqrt{2}}|11\rangle$.

3. We now prove that the trace distance, the square root of the fidelity and the fidelity itself are convex/concave. Let $p_{i} \geq 0$ such that $\sum_{i} p_{i}=1$. Prove that:

- $\left\|\rho-\sum p_{i} \sigma_{i}\right\|_{t r} \leq \sum_{i} p_{i}\left\|\rho-\sigma_{i}\right\|_{t r}$.
- $\sqrt{F}\left(\rho, \sum_{i} p_{i} \sigma_{i}\right) \geq \sum_{i} p_{i} \sqrt{F}\left(\rho, \sigma_{i}\right)$.
- Prove that if the classical fidelity F (over probability distributions) is concave, then the quantum fidelity (over density matrices) is concave.
- *Prove that $F\left(\rho, \sum_{i} p_{i} \sigma_{i}\right) \geq \sum_{i} p_{i} F\left(\rho, \sigma_{i}\right)$ for the classical fidelity function F.

4. For every $\delta \in[0,2]$ find two pairs of probability distributions $\left(p_{1}, q_{1}\right)$ and $\left(p_{2}, q_{2}\right)$ such that $\left|p_{1}-q_{1}\right|_{1}=\left|p_{2}-q_{2}\right|_{1}=\delta$ but in the first case the fidelity matches the lower bound $\sqrt{F}\left(p_{1}, q_{1}\right)=1-\frac{\delta}{2}$ whereas in the other it matches the upper bound $F\left(p_{2}, q_{2}\right)=1-\delta^{2} / 4$.
