- 1. Prove or disprove:
 - $\operatorname{Tr}(|A+B|) \leq \operatorname{Tr}(|A|) + \operatorname{Tr}(|B|).$
 - For A, B Hermitian, $\sqrt{A \otimes B} = \sqrt{A} \otimes \sqrt{B}$.
 - $A \ge B, C \ge D$ imply $AC \ge BD$.
 - If $A \ge 0$ then so is: (i) A^{-1} (if exists), (ii) $C^{\dagger}AC$ for any operator C.
- 2. Find Schmidt decompositions for:
 - $\frac{1}{2}(|00\rangle + |10\rangle |10\rangle + |11\rangle),$
 - $\frac{1}{\sqrt{6}}|00\rangle + \frac{1}{\sqrt{3}}|01\rangle + \frac{1}{\sqrt{2}}|11\rangle.$
- 3. We now prove that the trace distance, the square root of the fidelity and the fidelity itself are convex/concave. Let $p_i \ge 0$ such that $\sum_i p_i = 1$. Prove that:
 - $\|\rho \sum p_i \sigma_i\|_{tr} \leq \sum_i p_i \|\rho \sigma_i\|_{tr}$.
 - $\sqrt{F}(\rho, \sum_i p_i \sigma_i) \ge \sum_i p_i \sqrt{F}(\rho, \sigma_i).$
 - Prove that if the classical fidelity F (over probability distributions) is concave, then the quantum fidelity (over density matrices) is concave.
 - * Prove that $F(\rho, \sum_i p_i \sigma_i) \ge \sum_i p_i F(\rho, \sigma_i)$ for the *classical* fidelity function *F*.
- 4. For every $\delta \in [0,2]$ find two pairs of probability distributions (p_1,q_1) and (p_2,q_2) such that $|p_1 q_1|_1 = |p_2 q_2|_1 = \delta$ but in the first case the fidelity matches the lower bound $\sqrt{F(p_1,q_1)} = 1 \frac{\delta}{2}$ whereas in the other it matches the upper bound $F(p_2,q_2) = 1 \frac{\delta^2}{4}$.