1. You are given the promise that exactly one out of the four values $O_{1}, O_{2}, O_{3}, O_{4}$ is one. Show that with two queries you can find with success probability one, the index i such that $O_{i}=1$.
2. - Let $f:\{0,1\}^{N} \rightarrow\{0,1\}$ be a symmetric function. Prove that if there exists a degree k multi-variate polynomial $p: \mathbb{R}^{N} \rightarrow \mathbb{R}$ that ε-approximates f, then there exists a degree k symmetric, multi-variate polynomial $p^{\prime}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ that ε-approximates f.

- Let $p: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a degree k symmetric polynomial. Prove that there exists a degree k univariate polynomial $q: \mathbb{R} \rightarrow \mathbb{R}$ such that for every $x_{1}, \ldots, x_{N} \in\{0,1\}$, $p\left(x_{1}, \ldots, x_{N}\right)=q\left(\sum x_{i}\right)$.
- Prove that $\operatorname{deg}\left(O R_{N}\right)=N$ and conclude that $Q_{E}\left(O R_{N}\right) \geq \frac{N}{2}$.
- Prove that for any symmetric, non-trivial function $f:\{0,1\}^{N} \rightarrow\{0,1\}$ we have $\operatorname{deg}(f) \geq \frac{N}{2}$ and conclude that $Q_{E}(f) \geq \frac{N}{4}$.

3. A quantum black-box algorithm solves the $O R$ function with one-sided unbounded error, if

- On input $O_{1}=O_{2}=\ldots=O_{N}=0$ there is some positive probability of answering 0 .
- Whenever the answer is zero, $O R\left(O_{1}, \ldots, O_{N}\right)=0$.

Let us denote by $Q_{1}(O R)$ the minimal number of queries such an algorithm should make. Prove that $Q_{1}(O R) \geq \frac{N}{2}$.
4. (a) We are given O_{1}, \ldots, O_{N} with the promise that there are exactly R elements with $O_{i}=1$. Show an algorithm that finds (with a constant probability) such an i using only $O\left(\sqrt{\frac{N}{R}}\right)$ queries.
(b) Now we are given $O:[N] \rightarrow[N]$ with the promise that O is two-to-one (i.e., for every i there is exactly one other element having the same value O_{i}). Devise a quantum black-box algorithm that finds (with a constant probability) a collision (a pair $\{i, j\}$ such that $O_{i}=O_{j}$) using only $O\left(N^{1 / 3}\right)$ queries.
(c) Compare with Simon's algorithm.
(d) Compare with classical algorithms.
5. Let $R_{0}(f)$ denote the query complexity of a probabilistic black-box algorithm that for every input $x \in\{0,1\}^{N}$ outputs 'quit' with probability at most half and $f(x)$ otherwise (such an algorithm is called a zero-error algorithm).
The majority function $\operatorname{MAJ}\left(x_{1}, x_{2}, x_{3}\right)$ returns 1 if two or three of its inputs are 1 , and zero otherwise. The recursive-majority function is defined recursively as follows:

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}\right) & =\operatorname{MAJ}\left(x_{1}, x_{2}, x_{3}\right) \\
f\left(x_{1}, \ldots, x_{3^{n}}\right) & =f\left(f\left(x_{1}, \ldots, x_{3^{n-1}}\right), f\left(x_{3^{n-1}+1}, \ldots, x_{2 \cdot 3^{n-1}}\right), f\left(x_{2 \cdot 3^{n-1}+1}, \ldots, x_{3^{n}}\right)\right)
\end{aligned}
$$

We also denote $N=3^{n}$.
Prove that $R_{0}(f) \leq O\left(N^{\log _{3} 8-1}\right) \approx O\left(N^{0.892}\right)$.
6. (the deterministic communication complexity of the median) Alice holds n elements x_{1}, \ldots, x_{n} each from $[m]$ and Bob holds n elements y_{1}, \ldots, y_{n} also from $[m]$. Their goal is to compute the median element of $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$. More generally, they both know some $1 \leq$ $k \leq 2 n$, and their goal is to compute the k 'th largest element in the set $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$.

- Show a deterministic protocol using only $O(\log (m) \cdot \log (n))$ communication bits.
- Improve that to show a deterministic protocol using only $O(\log (m)+\log (n))$ communication bits.

7. (Order finding as phase estimation) We saw in class the order finding problem:

Input : n and an element $x \in \mathbb{Z}_{n}^{*}$.
Output : The minimal r such that $x^{r}=1(\bmod n)$.
The algorithm we saw in class (a few weeks ago) can be described as follows. We define $U_{x}(y)=|x y(\bmod n)\rangle$ and apply the following circuit:

Figure 1: Order finding
The circuit is then followed by the continued fraction algorithm. As you see this circuit is almost identical to the phase estimation circuit for U_{x}. We now want to analyze the above circuit using phase estimation.

- Define $W=\operatorname{Span}\left\{\left|x^{0}\right\rangle,\left|x^{1}\right\rangle, \ldots,\left|x^{r-1}\right\rangle\right\}$. Prove the W is invariant under U_{x} (i.e., $U_{x} W=W$) and that U_{x} is unitary over W.
- Find the matrix M describing the unitary transformation U_{x} in the basis $\left\{\left|x^{0}\right\rangle,\left|x^{1}\right\rangle, \ldots,\left|x^{r-1}\right\rangle\right\}$ of W.
- Prove that the eigenvectors of M are v_{0}, \ldots, v_{r-1} where $v_{k}=\frac{1}{\sqrt{r}} \sum_{j=0}^{r-1} w_{r}^{k j}\left|x^{j}\right\rangle$, and where w_{r} is a primitive r 'th root of unity. (This follows from a general principle, but if you don't know it you can do a direct check). What are the eigenvalues?
- Prove that $|1\rangle=\left|x^{0}\right\rangle$ is the sum of all the eigenvectors $\left|v_{k}\right\rangle$. (This again follows from a general principle, and again if you don't know it simply do a direct check).
- Analyze the circuit above.

