Tel Aviv University, Fall 2004 Lecture_ 8 Lecturer: Oded Regev
Lattices in Computer Science Dual Lattices Scribe: Gillat Kol

In this lecture we define the notion of tdeal of a lattice and see some if its applications.

DEFINITION 1 For a full-rank lattice A we define itslual lattice(sometimes known as theciprocal latticg
AN ={yeR"|Vz e, (x,y) € Z}.

In general, we define
A" ={y e span(A) |Vx € A, (z,y) € Z}.

In words, the dual ofA is the set of all points (in the span a&f) whose inner product with any of the
points inA is integer. As we will show later\* is indeed a lattice, as the name suggests.

ExAMPLE 1 The lattice of integer points satisfieg”()* = Z" (and hence can be called self-dual). Simi-
larly, (2Z")* = 37", and this gives some justification to the name reciprocal lattice.

From the above definition, we have the following geometrical interpretation of the dual lattice. For any
vectorz, the set of all points whose inner product witlis integer forms a set of hyperplanes perpendicular
to « and separated by distantg||z||. Hence, any vector in a lattice A imposes the constraint that all
points inA* lie in one of the hyperplanes defined bySee the next figure for an illustration.
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Figure 1: A lattice and its dual

DEFINITION 2 For a basisB = (by,...,b,) € R™*", define thelual basisD = (dy,...,d,) € R™*" as
the unique basis that satisfies

e span(D) = span(DB)
e B'D=1

The second condition can be interpreted as saying(thai;) = d;; whered;; = 1if i« = j and0
otherwise. It is not hard to check thatis indeed unique. In fact, for the case of a full-rank lattifeis
given by (BT)~!; in general, we geD = B(BTB)~! (and we could use this as our definition of a dual
basis).

In the next claim, we show that B is a basis of a latticd, then the dual basis d$ is a basis of\*. In
particular, this shows that* is indeed a lattice.

CLAIM 1 If D is the dual basis oB then(L(B))* = L(D).



PROOF. We first show thatC(D) is contained in(L£(B))*. Any z € L(B) can be written a$  a;b; for
someq; € Z. Therefore, for any we have

<.7},dj> = Zai<b¢,dj> =aqa; € 7

7

and we getD C (L(B))*. Itis easy to check thatC(B))* is closed under addition, hencé(D) C
(L(B))*. To complete the proof, we show thaef(B))* is contained inl(D). Take anyy € (L£(B))*.
Sincey € span(B) = span(D), we can writey = > a,;d; for somea; € R. Now for all j, Z > (y,b;) =
> ai(di,b;) = a;. Hencey € £(D) and the proof is complete)

CLAIM 2 For any latticeA, (A*)* = A.

PROOF. Let B be a basis oA. ThenB (BT B)~! is a basis of\* and

(B(BTB)™) - (B(BTB)™1-B(B"B)™") ' =B

is a basis of A*)*. O

The next claim says that the volume of the basic parallelepipéd dd the reciprocal of that af. For
example, it implies that the volume of the basic parallelepiped of a self-dual lattice mugabés the case
with Z™).

CLAIM 3 For any latticeA, det(A*) = 1/ det(A).

ProoE For full-rank lattices,

* - 1 ! :
det(A*) = [det((BT)™1)| = det(BTY| ~ det(B)‘ ~ det(A)
In general,
det(A*) = {/det(DTD)
= \/det(BTB)=)TBT - B(BTB)~)
=4/ (det(BTB)~1)
det(BTB) ~ det(A)

O

The following two claims give some relations between properties of a lattice and that of its dual. Such
properties are known as transference theorem. In a few lectures, we will see a considertable strengthening
of Claim 4 by Banaszczyk (showing th&af(A) - A, (A*) < n).

CLAIM 4 For any rankn lattice A, A\ (A) - A\1(A*) < n.

PrROOF. By Minkowski’s bound,
AL(A) < V- (det(A))n
and

Ny < e (det(ANE = VT
AL(A") < V/n- (det(A7)) et (A)E



CLAIM 5 For any rankn lattice A, A1 (A) - A\, (A*) > 1.

PROOF. Letv € A be such thafjv|| = A\ (A). Take any sety, ..., z, of n linearly independent vectors in
A*. Not all of them are orthogonal ta Hence, there exists arsuch that(xz;, v) # 0. By the definition of
the dual lattice, we haver;, v) € Z and hencé{z;|| > ﬁ O

For a basi9y,...,b,, let m; denote the projection on the spagen(by, ... ,bi_l)l. In particular,
m1(b1), ..., m(by) is the Gram-Schmidt orthogonalizationigf . . ., b,, .

CLAIM 6 Let B, D be dual bases. Then, for all B" = (m;(b;),...,mi(by,)) and D' = (d;,...,d,) are
also dual bases.

PROOF. First, notice thakpan(B’) = span(by, .. .,bi_l)L. Moreover, sincel;, . .., d, are orthogonal to
bi,...,bi_, and linearly independentpan(D’) = span(by, ..., bi_1)". Hencespan(B’) = span(D’).
Finally, we have that for any, k > 1,

(dj, mi(br)) = (dj, br) = O
where the first equality holds sinde € span(by, ..., b;_1)*". O

CLAIM 7 Letby,...,b, be some basis and Iét,...,b, be its Gram-Schmidt orthogonalization. Let
dy, ...,d, be the dual basis dfy, ..., b, in reverse order and led,,, . . . , d; be its Gram-Schmidt orthogo-
nalization (using this order). Then for al|

PROOF: The proof is by induction on. Assume the claim holds for lattices of rank- 1 and let us prove
it for lattices of rapkn. First, notice tpabl = by andd; is the projection ofl; onspan(da, ... ,dn)L =
span(b;). Hencegd; € span(b;) and(di, b1) = (d1,b1) = 1. This implies that

- by by
di = =
10102 |6y |2

We can now complete the proof by applying the inductive hypothesis to the bagés), . . ., m2(b,)) and
da, ..., d,. Indeed, Claim 6 says that these are dual bases, and moreover, the Gram-Schmidt orthogonaliza-
tion of the former i, ..., b,. O

1 Korkine-Zolotarev bases

In this section we define the notion of a Korkine-Zolotarev (KZ) basis. This gives one way to formalize the
idea of a ‘shortest possible’ basis.

DEFINITION 3 For arankn lattice A, we define its Korkine-Zolotarev (KZ) basis . . ., b,, recursively as
follows. We leb; be the shortest vector in. We then lef\’ be the lattice given by the projection Afon
the subspace apan(A) orthogonal tob;. Letes, . . ., ¢, be the KZ basis ok’. Defineb; = ¢; + a;b; where

«; € (—3, 3] is the unique number such thiate A.
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Figure 2: A lattice and its KZ basis

It is not too difficult to verify that\’ is indeed a lattice. Moreove, is a primitive vectot in A (since it
is a shortest vector) and hence the vecigrs. . , b, defined above indeed form a basisofThe definition
is illustrated in Figure 2.
As a first application of Korkine-Zolotarev bases, we prove the following lemma by Lagarias, Lenstra,
and Schnorr. Recall that for any basis. . ., b,, we have thamin(||b1]|,. .., [|bx]) < Ai(A). The lemma
says that any lattice has a basis where this lower bound is not far from being tight.

LEMMA 8 ([2]) For any lattice\, there exists a basls, . . . , b, such that

. ~ ~ 1
min([|bul,.. -, [1ball) = - AL(A)
PROOF. Letd;,...,d, be a KZ basis of\* and letb,, ..., b; be its dual basis in reverse order. We claim
thatb,, . .., b; satisfies the lemma. By Claim 7, we know tthat= ||d£l-i||2' Hence, its enough to show that
max(||di],. .., |lda]l) < ;%5 First,di is the shortest vector in*. By Claim 4, we haveld: || < .75

Next, dy = ma(dy) is the shortest vector if(my(da), . .., m(d,)). By Claim 6, the dual of this lattice is
L(bay ... by). ButA1(L(ba,...,b,)) > A (A) (sinceL(be,...,b,) is a sublattice ofA) and hence

n—1 n

(Clr o) = M)

dy| <
[[dal| < by
We continue similarly for alf. O

COROLLARY 9 GapSVP,, € coNP

PROOF. Recall that an instance &apSVP,, is given by(B, d); itis a YES instance if\; (£(B)) < dand a
No instance ifA; (£(B)) > n-d. The verifier expects a witness of the form . . ., v,,. It accepts if and only

if v, ..., v, form abasis ofZ(B) (recall that this can be verified efficiently) andn(||v1]], . .., ||v.]]) > d.
If \1(£(B)) > n -dthen such a basis exists by Lemma 8\{L(B)) < d then no such basis exists since
min(||v1 ], ..., [vn.]]) < M\ (L£(B)) < d for any basisD

Using similar techniques, it can be shown tkapCVP,1.5 € coNP. We mention that it is by now
known that in facGapCVP ., andGapSVP_;; are both incoNP[1].

We complete this lecture with the following somewhat surprising result by Lenstra and Schnorr. Recall
that Minkowski’'s bound says that for any lattide A; (A) < \/ﬁ(det(A))%. However, it is easy to see that
in many cases Minkowski's bound is far from being tight. Nevertheless, the following lemma implies that
being able to find vectors of length at mQ,éE(det(A))% is enough to imply am-approximation t&VP.

'Recall that a primitive vector is a vectore A such that there is nb > 2 for whichv/k € A
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LEMMA 10 Assume there exists an algorithfnthat given a basi®3, finds a non-zero vectar € L(B)
such that )
[o]l < f(n) - (det(L(B)))»

for some non-decreasing functigin). Then, we can approxima®/P to within ( f(n))?.

PROOF. By applying A to £(B) and £(B)* we obtainu € L£(B), v € L£(B)* such thatl|u|| < f(n) -
(det(L(B)))7, |v]| < f(n) - (det(L(B))) =. In particular,||u - [[v]| < (f(n))2. So the result follows
from the following lemmal™

LEMMA 11 Assume there exists an algorithinthat given a basi®, finds non-zero vectors € L(B),
v € L(B)* such that|u|| - ||v|| < g(n) for some non-decreasing functigtn). Then, we can approximate
SVP to within g(n).

PROOF. First, we describe a recursive procedure that given a lattice, outputs a set of vactors u,,
in A and a basisn,...,v, of A*. The procedure is recursive. First, applyto obtain a pairuy, v;.
Without loss of generality, we can assume thats primitive (indeed, writes; = > a;b; and replace it by
vi/ged(ay, - .., a,)). Let A’ be the projection ofA* on the subspace epan(A*) orthogonal tov;. Then,
apply the procedure recursively A8 and letus, . . ., u,, v5, . .., v, be the result. Define; = v} + a;v; for
the uniquer; € (—3, 3] for whichv; € A*. This completes the description of the procedure.

It can be checked that the output of the procedure satisfiesthat , v, is a basis ofA* and that for

all 4, [|u] - |oi]| < g(n —i+1) < g(n). Letb,,...,b; be the reversed dual basis«@f . . ., v,. Then,

o 1 1 :
min [|b;|| = min —— > —— min ||u;]|.
[oill — g(n)
Hence, .
min [|u]| < g(n) - min [[bi]| < g(n) - A1 (A)
where we used that,, . . ., by is a basis ofA. Therefore, by outputting the shortest vector among. . , u,

we obtain g (n) approximation t&6VP. O
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