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Lecture 8
Dual Lattices

Lecturer: Oded Regev
Scribe: Gillat Kol

In this lecture we define the notion of thedualof a lattice and see some if its applications.

DEFINITION 1 For a full-rank latticeΛ we define itsdual lattice(sometimes known as thereciprocal lattice)

Λ∗ = {y ∈ Rn | ∀x ∈ Λ, 〈x, y〉 ∈ Z}.

In general, we define
Λ∗ = {y ∈ span(Λ) | ∀x ∈ Λ, 〈x, y〉 ∈ Z}.

In words, the dual ofΛ is the set of all points (in the span ofΛ) whose inner product with any of the
points inΛ is integer. As we will show later,Λ∗ is indeed a lattice, as the name suggests.

EXAMPLE 1 The lattice of integer points satisfies (Zn)∗ = Zn (and hence can be called self-dual). Simi-
larly, (2Zn)∗ = 1

2Z
n, and this gives some justification to the name reciprocal lattice.

From the above definition, we have the following geometrical interpretation of the dual lattice. For any
vectorx, the set of all points whose inner product withx is integer forms a set of hyperplanes perpendicular
to x and separated by distance1/‖x‖. Hence, any vectorx in a latticeΛ imposes the constraint that all
points inΛ∗ lie in one of the hyperplanes defined byx. See the next figure for an illustration.
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Figure 1: A lattice and its dual

DEFINITION 2 For a basisB = (b1, . . . , bn) ∈ Rm×n, define thedual basisD = (d1, . . . , dn) ∈ Rm×n as
the unique basis that satisfies

• span(D) = span(B)

• BT D = I

The second condition can be interpreted as saying that〈bi, dj〉 = δij whereδij = 1 if i = j and0
otherwise. It is not hard to check thatD is indeed unique. In fact, for the case of a full-rank lattice,D is
given by(BT )−1; in general, we getD = B(BT B)−1 (and we could use this as our definition of a dual
basis).

In the next claim, we show that ifB is a basis of a latticeΛ, then the dual basis ofB is a basis ofΛ∗. In
particular, this shows thatΛ∗ is indeed a lattice.

CLAIM 1 If D is the dual basis ofB then(L(B))∗ = L(D).
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PROOF: We first show thatL(D) is contained in(L(B))∗. Any x ∈ L(B) can be written as
∑

aibi for
someai ∈ Z. Therefore, for anyj we have

〈x, dj〉 =
∑

i

ai〈bi, dj〉 = ai ∈ Z

and we getD ⊆ (L(B))∗. It is easy to check that(L(B))∗ is closed under addition, hence,L(D) ⊆
(L(B))∗. To complete the proof, we show that(L(B))∗ is contained inL(D). Take anyy ∈ (L(B))∗.
Sincey ∈ span(B) = span(D), we can writey =

∑
aidi for someai ∈ R. Now for all j, Z 3 〈y, bj〉 =∑

ai〈di, bj〉 = aj . Hence,y ∈ L(D) and the proof is complete.2

CLAIM 2 For any latticeΛ, (Λ∗)∗ = Λ.

PROOF: Let B be a basis ofΛ. ThenB(BT B)−1 is a basis ofΛ∗ and
(
B(BT B)−1

) · ((B(BT B)−1)T ·B(BT B)−1
)−1 = B

is a basis of(Λ∗)∗. 2

The next claim says that the volume of the basic parallelepiped ofΛ∗ is the reciprocal of that ofΛ. For
example, it implies that the volume of the basic parallelepiped of a self-dual lattice must be1 (as is the case
with Zn).

CLAIM 3 For any latticeΛ, det(Λ∗) = 1/det(Λ).

PROOF: For full-rank lattices,

det(Λ∗) =
∣∣det((BT )−1)

∣∣ =
∣∣∣∣

1
det(BT )

∣∣∣∣ =
∣∣∣∣

1
det(B)

∣∣∣∣ =
1

det(Λ)
.

In general,

det(Λ∗) =
√

det(DT D)

=
√

det(((BT B)−1)T BT ·B(BT B)−1)

=
√

(det(BT B)−1)

=
1√

det(BT B)
=

1
det(Λ)

.

2

The following two claims give some relations between properties of a lattice and that of its dual. Such
properties are known as transference theorem. In a few lectures, we will see a considertable strengthening
of Claim 4 by Banaszczyk (showing thatλ1(Λ) · λn(Λ∗) ≤ n).

CLAIM 4 For any rankn latticeΛ, λ1(Λ) · λ1(Λ∗) ≤ n.

PROOF: By Minkowski’s bound,
λ1(Λ) ≤ √

n · (det(Λ))
1
n

and

λ1(Λ∗) ≤
√

n · (det(Λ∗))
1
n =

√
n

(det(Λ))
1
n

.

2
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CLAIM 5 For any rankn latticeΛ, λ1(Λ) · λn(Λ∗) ≥ 1.

PROOF: Let v ∈ Λ be such that‖v‖ = λ1(Λ). Take any setx1, . . . , xn of n linearly independent vectors in
Λ∗. Not all of them are orthogonal tov. Hence, there exists ani such that〈xi, v〉 6= 0. By the definition of
the dual lattice, we have〈xi, v〉 ∈ Z and hence‖xi‖ ≥ 1

‖v‖ . 2

For a basisb1, . . . , bn, let πi denote the projection on the spacespan(b1, . . . , bi−1)
⊥. In particular,

π1(b1), . . . , πn(bn) is the Gram-Schmidt orthogonalization ofb1, . . . , bn.

CLAIM 6 Let B, D be dual bases. Then, for alli, B′ = (πi(bi), . . . , πi(bn)) andD′ = (di, . . . , dn) are
also dual bases.

PROOF: First, notice thatspan(B′) = span(b1, . . . , bi−1)
⊥. Moreover, sincedi, . . . , dn are orthogonal to

b1, . . . , bi−1 and linearly independent,span(D′) = span(b1, . . . , bi−1)
⊥. Hence,span(B′) = span(D′).

Finally, we have that for anyj, k ≥ i,

〈dj , πi(bk)〉 = 〈dj , bk〉 = δjk

where the first equality holds sincedj ∈ span(b1, . . . , bi−1)
⊥. 2

CLAIM 7 Let b1, . . . , bn be some basis and let̃b1, . . . , b̃n be its Gram-Schmidt orthogonalization. Let
dn, . . . , d1 be the dual basis ofb1, . . . , bn in reverse order and let̃dn, . . . , d̃1 be its Gram-Schmidt orthogo-
nalization (using this order). Then for alli,

d̃i =
b̃i

‖b̃i‖2
.

PROOF: The proof is by induction onn. Assume the claim holds for lattices of rankn− 1 and let us prove
it for lattices of rankn. First, notice that̃b1 = b1 and d̃1 is the projection ofd1 on span(d2, . . . , dn)⊥ =
span(b1). Hence,d̃1 ∈ span(b1) and〈d̃1, b1〉 = 〈d1, b1〉 = 1. This implies that

d̃1 =
b1

‖b1‖2
=

b̃1

‖b̃1‖2
.

We can now complete the proof by applying the inductive hypothesis to the bases(π2(b2), . . . , π2(bn)) and
d2, . . . , dn. Indeed, Claim 6 says that these are dual bases, and moreover, the Gram-Schmidt orthogonaliza-
tion of the former isb̃2, . . . , b̃n. 2

1 Korkine-Zolotarev bases

In this section we define the notion of a Korkine-Zolotarev (KZ) basis. This gives one way to formalize the
idea of a ‘shortest possible’ basis.

DEFINITION 3 For a rankn latticeΛ, we define its Korkine-Zolotarev (KZ) basisb1, . . . , bn recursively as
follows. We letb1 be the shortest vector inΛ. We then letΛ′ be the lattice given by the projection ofΛ on
the subspace ofspan(Λ) orthogonal tob1. Letc2, . . . , cn be the KZ basis ofΛ′. Definebi = ci +αib1 where
αi ∈ (−1

2 , 1
2 ] is the unique number such thatbi ∈ Λ.
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Figure 2: A lattice and its KZ basis

It is not too difficult to verify thatΛ′ is indeed a lattice. Moreover,b1 is a primitive vector1 in Λ (since it
is a shortest vector) and hence the vectorsb1, . . . , bn defined above indeed form a basis ofΛ. The definition
is illustrated in Figure 2.

As a first application of Korkine-Zolotarev bases, we prove the following lemma by Lagarias, Lenstra,
and Schnorr. Recall that for any basisb1, . . . , bn, we have thatmin(‖b̃1‖, . . . , ‖b̃n‖) ≤ λ1(Λ). The lemma
says that any lattice has a basis where this lower bound is not far from being tight.

LEMMA 8 ([2]) For any latticeΛ, there exists a basisb1, . . . , bn such that

min(‖b̃1‖, . . . , ‖b̃n‖) ≥ 1
n
· λ1(Λ)

PROOF: Let d1, . . . , dn be a KZ basis ofΛ∗ and letbn, . . . , b1 be its dual basis in reverse order. We claim
thatbn, . . . , b1 satisfies the lemma. By Claim 7, we know thatb̃i = d̃i

‖d̃i‖2 . Hence, its enough to show that

max(‖d̃1‖, . . . , ‖d̃n‖) ≤ n
λ1(Λ) . First, d̃1 is the shortest vector inΛ∗. By Claim 4, we have‖d̃1‖ ≤ n

λ1(Λ) .

Next, d̃2 = π2(d2) is the shortest vector inL(π2(d2), . . . , π2(dn)). By Claim 6, the dual of this lattice is
L(b2, . . . , bn). But λ1(L(b2, . . . , bn)) ≥ λ1(Λ) (sinceL(b2, . . . , bn) is a sublattice ofΛ) and hence

‖d̃2‖ ≤ n− 1
λ1(L(b1, . . . , bn))

≤ n

λ1(Λ)
.

We continue similarly for alli. 2

COROLLARY 9 GapSVPn ∈ coNP

PROOF: Recall that an instance ofGapSVPn is given by(B, d); it is a YES instance ifλ1(L(B)) ≤ d and a
NO instance ifλ1(L(B)) > n ·d. The verifier expects a witness of the formv1, . . . , vn. It accepts if and only
if v1, . . . , vn form a basis ofL(B) (recall that this can be verified efficiently) andmin(‖ṽ1‖, . . . , ‖ṽn‖) > d.
If λ1(L(B)) > n · d then such a basis exists by Lemma 8. Ifλ1(L(B)) ≤ d then no such basis exists since
min(‖ṽ1‖, . . . , ‖ṽn‖) ≤ λ1(L(B)) ≤ d for any basis.2

Using similar techniques, it can be shown thatGapCVPn1.5 ∈ coNP. We mention that it is by now
known that in factGapCVP√n andGapSVP√n are both incoNP[1].

We complete this lecture with the following somewhat surprising result by Lenstra and Schnorr. Recall
that Minkowski’s bound says that for any latticeΛ, λ1(Λ) ≤ √

n(det(Λ))
1
n . However, it is easy to see that

in many cases Minkowski’s bound is far from being tight. Nevertheless, the following lemma implies that
being able to find vectors of length at most

√
n(det(Λ))

1
n is enough to imply ann-approximation toSVP.

1Recall that a primitive vector is a vectorv ∈ Λ such that there is nok ≥ 2 for whichv/k ∈ Λ
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LEMMA 10 Assume there exists an algorithmA that given a basisB, finds a non-zero vectorv ∈ L(B)
such that

‖v‖ ≤ f(n) · (det(L(B)))
1
n

for some non-decreasing functionf(n). Then, we can approximateSVP to within (f(n))2.

PROOF: By applyingA to L(B) andL(B)∗ we obtainu ∈ L(B), v ∈ L(B)∗ such that‖u‖ ≤ f(n) ·
(det(L(B)))

1
n , ‖v‖ ≤ f(n) · (det(L(B)))−

1
n . In particular,‖u‖ · ‖v‖ ≤ (f(n))2. So the result follows

from the following lemma.2

LEMMA 11 Assume there exists an algorithmA that given a basisB, finds non-zero vectorsu ∈ L(B),
v ∈ L(B)∗ such that‖u‖ · ‖v‖ ≤ g(n) for some non-decreasing functiong(n). Then, we can approximate
SVP to within g(n).

PROOF: First, we describe a recursive procedure that given a lattice, outputs a set of vectorsu1, . . . , un

in Λ and a basisv1, . . . , vn of Λ∗. The procedure is recursive. First, applyA to obtain a pairu1, v1.
Without loss of generality, we can assume thatv1 is primitive (indeed, writev1 =

∑
aibi and replace it by

v1/gcd(a1, . . . , an)). Let Λ′ be the projection ofΛ∗ on the subspace ofspan(Λ∗) orthogonal tov1. Then,
apply the procedure recursively toΛ′ and letu2, . . . , un, v′2, . . . , v

′
n be the result. Definevi = v′i + αiv1 for

the uniqueαi ∈ (−1
2 , 1

2 ] for whichvi ∈ Λ∗. This completes the description of the procedure.
It can be checked that the output of the procedure satisfies thatv1, . . . , vn is a basis ofΛ∗ and that for

all i, ‖ui‖ · ‖ṽi‖ ≤ g(n− i + 1) ≤ g(n). Let bn, . . . , b1 be the reversed dual basis ofv1, . . . , vn. Then,

min ‖b̃i‖ = min
1
‖ṽi‖ ≥

1
g(n)

min ‖ui‖.

Hence,
min ‖ui‖ ≤ g(n) ·min ‖b̃i‖ ≤ g(n) · λ1(Λ)

where we used thatbn, . . . , b1 is a basis ofΛ. Therefore, by outputting the shortest vector amongu1, . . . , un

we obtain ag(n) approximation toSVP. 2
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