- 1. Improving the Sudan list-decoding algorithm: In class we saw how to list decode RS codes from agreements as small as $2\sqrt{kn}$. Improve this to $\sqrt{2kn}$. The best-known algorithm, due to Guruswami and Sudan, needs only \sqrt{kn} agreement and is based on multiplicities. See Sudan's lecture notes or Guruswami's thesis.
- 2. Yekhanin's approach to locally decodable codes: A binary code $C : \{0,1\}^n \to \{0,1\}^N$ is said to be (q, δ, ε) -locally decodable if there exists a randomized decoding algorithm \mathcal{A} that on input $y \in \{0,1\}^N$ and $i \in [n]$ where y satisfies $\delta(y, C(x)) \leq \delta$ for some $x \in \{0,1\}^n$ outputs x_i with probability at least 1ε and makes at most q queries to y. In class we saw a simple $(2, \frac{1}{4} \varepsilon, \frac{1}{2} 2\varepsilon)$ -local decoder for Hadamard codes.

Definition 1 Let $N, R, n \ge 1$ be some integers. For each $i \in [n]$, $r \in [R]$, let T_i and Q_{ir} be subsets of [N]. We say that T_i and Q_{ir} form a (q, n, N, R, s) regular intersecting family if the following holds:

- (a) q is odd;
- (b) For all $i \in [n]$, $|T_i| = s$;
- (c) For all $i \in [n]$ and $r \in [R]$, $Q_{ir} \subseteq T_i$ and $|Q_{ir}| = q$;
- (d) For all $i \in [n]$ and $w \in T_i$, $|\{r \in [R] \mid w \in Q_{ir}\}| = Rq/s$ (i.e., T_i is uniformly covered by the Q_{ir});
- (e) For all $i, j \in [n]$, $i \neq j$ and $r \in [R]$, $|Q_{ir} \cap T_j| \equiv 0 \mod 2$.

Show how to use a (q, n, N, R, s) regular intersecting family to construct binary linear code encoding *n* bits into *N* bits that is $(q, \delta, \delta Nq/s)$ locally decodable for all $\delta > 0$.

- 3. One small step in Yekhanin's construction of a regular intersecting family: Let p be an odd prime number and $m \ge p-1$ be an integer. Define $n = \binom{m}{p-1}$. Show that there exist two families of vectors $\{u_1, \ldots, u_n\}$ and $\{v_1, \ldots, v_n\}$ in \mathbb{F}_p^m such that
 - for all $i \in [n]$, $\langle u_i, v_i \rangle = 0$;
 - for all $i, j \in [n], i \neq j$, we have $\langle u_i, v_j \rangle \neq 0$.