1. Improving the Sudan list-decoding algorithm: In class we saw how to list decode RS codes from agreements as small as $2 \sqrt{k n}$. Improve this to $\sqrt{2 k n}$. The best-known algorithm, due to Guruswami and Sudan, needs only $\sqrt{k n}$ agreement and is based on multiplicities. See Sudan's lecture notes or Guruswami's thesis.
2. Yekhanin's approach to locally decodable codes: A binary code $C:\{0,1\}^{n} \rightarrow$ $\{0,1\}^{N}$ is said to be $(q, \delta, \varepsilon)$-locally decodable if there exists a randomized decoding algorithm $\mathcal{A}$ that on input $y \in\{0,1\}^{N}$ and $i \in[n]$ where $y$ satisfies $\delta(y, C(x)) \leq \delta$ for some $x \in\{0,1\}^{n}$ outputs $x_{i}$ with probability at least $1-\varepsilon$ and makes at most $q$ queries to $y$. In class we saw a simple $\left(2, \frac{1}{4}-\varepsilon, \frac{1}{2}-2 \varepsilon\right)$-local decoder for Hadamard codes.

Definition 1 Let $N, R, n \geq 1$ be some integers. For each $i \in[n], r \in[R]$, let $T_{i}$ and $Q_{i r}$ be subsets of $[N]$. We say that $T_{i}$ and $Q_{\text {ir }}$ form a $(q, n, N, R, s)$ regular intersecting family if the following holds:
(a) $q$ is odd;
(b) For all $i \in[n],\left|T_{i}\right|=s$;
(c) For all $i \in[n]$ and $r \in[R], Q_{i r} \subseteq T_{i}$ and $\left|Q_{i r}\right|=q$;
(d) For all $i \in[n]$ and $w \in T_{i},\left|\left\{r \in[R] \mid w \in Q_{i r}\right\}\right|=R q / s$ (i.e., $T_{i}$ is uniformly covered by the $Q_{i r}$ );
(e) For all $i, j \in[n], i \neq j$ and $r \in[R],\left|Q_{i r} \cap T_{j}\right| \equiv 0 \bmod 2$.

Show how to use a $(q, n, N, R, s)$ regular intersecting family to construct binary linear code encoding $n$ bits into $N$ bits that is ( $q, \delta, \delta N q / s$ ) locally decodable for all $\delta>0$.
3. One small step in Yekhanin's construction of a regular intersecting family: Let $p$ be an odd prime number and $m \geq p-1$ be an integer. Define $n=\binom{m}{p-1}$. Show that there exist two families of vectors $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{n}\right\}$ in $\mathbb{F}_{p}^{m}$ such that

- for all $i \in[n],\left\langle u_{i}, v_{i}\right\rangle=0$;
- for all $i, j \in[n], i \neq j$, we have $\left\langle u_{i}, v_{j}\right\rangle \neq 0$.

