Homework 4 Due 2006/12/7

Instructions: As before.

Problems

- 1. Finite fields: Let \mathbb{F}_q be the field with $q = p^m$ elements for some prime p and $m \ge 1$.
 - (a) Show that there is a bijection $f : \mathbb{F}_q \to \mathbb{F}_p^m$ which is \mathbb{F}_p linear (i.e., f(x+y) = f(x) + f(y)and $f(\alpha x) = \alpha f(x)$ for all $x, y \in \mathbb{F}_q, \alpha \in \mathbb{F}_p$). This shows that we can think of the field \mathbb{F}_q as the set of *m*-dimensional vectors over \mathbb{F}_p with standard addition of vectors, and some rule for the multiplication of two vectors. Hint: Recall/show that \mathbb{F}_q is an *m*-dimensional vector space over \mathbb{F}_p .
 - (b) Show that for any $a, b \in \mathbb{F}_q$, $(a+b)^p = a^p + b^p$. Deduce that $(a+b)^{p^l} = a^{p^l} + b^{p^l}$ for any $l \ge 0$. Hint: In \mathbb{F}_q , the element $p = \underbrace{1 + \cdots + 1}_{l \ge 0}$ is equal to 0 (why?).
 - (c) Prove the following equality in $\mathbb{F}_q[x]$:

$$\prod_{\alpha \in \mathbb{F}_q^*} (x - \alpha) = x^{q-1} - 1.$$

Hint: Do not expand the left hand side.

- (d) Assume *p* is odd. An element $\alpha \in \mathbb{F}_q$ is called a *quadratic residue* if it is the square of a nonzero element in \mathbb{F}_q . Show that there are exactly (q-1)/2 quadratic residues in \mathbb{F}_q . Hint: Recall that the nonzero elements in \mathbb{F}_q are given by $1, \gamma, \gamma^2, \ldots, \gamma^{q-2}$ where γ is a generator of \mathbb{F}_q^* .
- 2. Binary BCH codes: Let $q = 2^m$ for some $m \ge 1$, n = q 1 and k = n 2t for some $t \ge 1$. The generator matrix of a primitive $[n, k, 2t + 1]_q$ RS code is given by

$$G = \begin{pmatrix} 1 & 1 & \cdots & 1\\ \alpha_1 & \alpha_2 & \cdots & \alpha_n\\ \vdots & \vdots & & \vdots\\ \alpha_1^{k-1} & \alpha_2^{k-1} & \cdots & \alpha_n^{k-1} \end{pmatrix}$$

where $\alpha_1, \ldots, \alpha_n$ are all nonzero elements of \mathbb{F}_q . In class we showed that the parity check matrix of this code is given by

$$H = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2 \\ \vdots & \vdots & & \vdots \\ \alpha_1^{2t} & \alpha_2^{2t} & \cdots & \alpha_n^{2t} \end{pmatrix}$$

(make sure you remember why).

(a) Show that any 2t = n - k columns of *H* are linearly independent (over \mathbb{F}_q).

- Fall 2006 Coding Theory
 - (b) By removing all even rows, we obtain the $t \times n$ matrix

$$H' = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \\ \alpha_1^3 & \alpha_2^3 & \cdots & \alpha_n^3 \\ \vdots & \vdots & & \vdots \\ \alpha_1^{2t-1} & \alpha_2^{2t-1} & \cdots & \alpha_n^{2t-1} \end{pmatrix}$$

Show that any 2t columns of H' are linearly independent over \mathbb{F}_2 (i.e., any sum of at most 2t columns of H' is nonzero). Hint: Use (1b).

- (c) Let H'' be the $tm \times n$ matrix over \mathbb{F}_2 obtained from H' by replacing each element of \mathbb{F}_q with an *m*-bit column vector, as in (1a). Show that any 2t columns of H'' are linearly independent (over \mathbb{F}_2).
- (d) Deduce the existence of a $[n, \ge n t \log(n + 1), \ge 2t + 1]_2$ code. Notice that for any constant *t*, this code almost matches the Hamming bound.
- 3. Hadamard matrices: Recall that an $n \times n$ matrix H all of whose entries are from $\{+1, -1\}$ is a Hadamard matrix if $H \cdot H^T = n \cdot I$ where the matrix product is over the reals and I is the $n \times n$ identity matrix.
 - (a) Show that the determinant of an $n \times n$ Hadamard matrix is $n^{n/2}$ in absolute value and that this is the largest achievable by any ± 1 matrix. Hint: Use Hadamard's inequality.
 - (b) Show that if there is an $n \times n$ Hadamard matrix then n is either 1 or 2 or a multiple of 4. It is conjectured that this condition is also sufficient.
 - (c) Given an $n \times n$ Hadamard matrix H_n and an $m \times m$ Hadamard matrix H_m , construct an $nm \times nm$ Hadamard matrix.
 - (d) (Not to be turned in) Let q be a prime power equivalent to 3 modulo 4. Let $H = \{h_{ij}\}$ be the $q \times q$ matrix with $h_{ij} = 1$ if i = j, and $h_{ij} = (j i)^{(q-1)/2}$ otherwise where we think of i, j as running over all elements of \mathbb{F}_q . Let H' be the $(q + 1) \times (q + 1)$ matrix obtained from H by adding one row and one column of 1s. Verify that H' is a Hadamard matrix. This is Paley's construction of Hadamard matrices. The first dimension not covered by Paley's nor Sylvester's construction is n = 36. Other constructions are known there. The first dimension where no Hadamard matrix is known is 668.
- 4. Wozencraft ensemble: Show that for any $0 \le \delta \le 1$ and $\varepsilon > 0$ there is a family of 2^k codes such that all but an ε fraction of them are $[(1 + \delta)k, k, (H^{-1}(1 - \frac{1}{1+\delta}) - \varepsilon)(1 + \delta)k]_2$ -codes, i.e., almost all codes nearly match the Gilbert-Varshamov bound for rate $\frac{1}{1+\delta}$. Use the family of linear codes $\{S_\alpha \mid \alpha \in \mathbb{F}_{2^k}\}$ where S_α is obtained from the linear code $\{(x, \alpha x) \mid x \in \mathbb{F}_{2^k}\} \subseteq \mathbb{F}_2^{2k}$ by removing some arbitrary $(1 - \delta)k$ coordinates from all codewords. Deduce that Justesen codes can match the Zyablov bound for all large enough rates.