Instructions: As before.

Problems

1. Finite fields: Let \mathbb{F}_{q} be the field with $q=p^{m}$ elements for some prime p and $m \geq 1$.
(a) Show that there is a bijection $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}^{m}$ which is \mathbb{F}_{p} linear (i.e., $f(x+y)=f(x)+f(y)$ and $f(\alpha x)=\alpha f(x)$ for all $x, y \in \mathbb{F}_{q}, \alpha \in \mathbb{F}_{p}$). This shows that we can think of the field \mathbb{F}_{q} as the set of m-dimensional vectors over \mathbb{F}_{p} with standard addition of vectors, and some rule for the multiplication of two vectors. Hint: Recall/show that \mathbb{F}_{q} is an m-dimensional vector space over \mathbb{F}_{p}.
(b) Show that for any $a, b \in \mathbb{F}_{q},(a+b)^{p}=a^{p}+b^{p}$. Deduce that $(a+b)^{p^{l}}=a^{p^{l}}+b^{p^{l}}$ for any $l \geq 0$. Hint: In \mathbb{F}_{q}, the element $p=\underbrace{1+\cdots+1}_{p}$ is equal to 0 (why?).
(c) Prove the following equality in $\mathbb{F}_{q}[x]$:

$$
\prod_{\alpha \in \mathbb{F}_{q}^{*}}(x-\alpha)=x^{q-1}-1 .
$$

Hint: Do not expand the left hand side.
(d) Assume p is odd. An element $\alpha \in \mathbb{F}_{q}$ is called a quadratic residue if it is the square of a nonzero element in \mathbb{F}_{q}. Show that there are exactly $(q-1) / 2$ quadratic residues in \mathbb{F}_{q}. Hint: Recall that the nonzero elements in \mathbb{F}_{q} are given by $1, \gamma, \gamma^{2}, \ldots, \gamma^{q-2}$ where γ is a generator of \mathbb{E}_{q}^{*}.
2. Binary BCH codes: Let $q=2^{m}$ for some $m \geq 1, n=q-1$ and $k=n-2 t$ for some $t \geq 1$. The generator matrix of a primitive $[n, k, 2 t+1]_{q} \mathrm{RS}$ code is given by

$$
G=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\
\vdots & \vdots & & \vdots \\
\alpha_{1}^{k-1} & \alpha_{2}^{k-1} & \cdots & \alpha_{n}^{k-1}
\end{array}\right)
$$

where $\alpha_{1}, \ldots, \alpha_{n}$ are all nonzero elements of \mathbb{F}_{q}. In class we showed that the parity check matrix of this code is given by

$$
H=\left(\begin{array}{cccc}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \cdots & \alpha_{n}^{2} \\
\vdots & \vdots & & \vdots \\
\alpha_{1}^{2 t} & \alpha_{2}^{2 t} & \cdots & \alpha_{n}^{2 t}
\end{array}\right)
$$

(make sure you remember why).
(a) Show that any $2 t=n-k$ columns of H are linearly independent (over \mathbb{F}_{q}).
(b) By removing all even rows, we obtain the $t \times n$ matrix

$$
H^{\prime}=\left(\begin{array}{cccc}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\
\alpha_{1}^{3} & \alpha_{2}^{3} & \cdots & \alpha_{n}^{3} \\
\vdots & \vdots & & \vdots \\
\alpha_{1}^{2 t-1} & \alpha_{2}^{2 t-1} & \cdots & \alpha_{n}^{2 t-1}
\end{array}\right) .
$$

Show that any $2 t$ columns of H^{\prime} are linearly independent over \mathbb{F}_{2} (i.e., any sum of at most $2 t$ columns of H^{\prime} is nonzero). Hint: Use (1b).
(c) Let $H^{\prime \prime}$ be the $t m \times n$ matrix over \mathbb{F}_{2} obtained from H^{\prime} by replacing each element of \mathbb{F}_{q} with an m-bit column vector, as in (1a). Show that any $2 t$ columns of $H^{\prime \prime}$ are linearly independent (over \mathbb{F}_{2}).
(d) Deduce the existence of a $[n, \geq n-t \log (n+1), \geq 2 t+1]_{2}$ code. Notice that for any constant t, this code almost matches the Hamming bound.
3. Hadamard matrices: Recall that an $n \times n$ matrix H all of whose entries are from $\{+1,-1\}$ is a Hadamard matrix if $H \cdot H^{T}=n \cdot I$ where the matrix product is over the reals and I is the $n \times n$ identity matrix.
(a) Show that the determinant of an $n \times n$ Hadamard matrix is $n^{n / 2}$ in absolute value and that this is the largest achievable by any ± 1 matrix. Hint: Use Hadamard's inequality.
(b) Show that if there is an $n \times n$ Hadamard matrix then n is either 1 or 2 or a multiple of 4. It is conjectured that this condition is also sufficient.
(c) Given an $n \times n$ Hadamard matrix H_{n} and an $m \times m$ Hadamard matrix H_{m}, construct an $n m \times n m$ Hadamard matrix.
(d) (Not to be turned in) Let q be a prime power equivalent to 3 modulo 4 . Let $H=\left\{h_{i j}\right\}$ be the $q \times q$ matrix with $h_{i j}=1$ if $i=j$, and $h_{i j}=(j-i)^{(q-1) / 2}$ otherwise where we think of i, j as running over all elements of \mathbb{F}_{q}. Let H^{\prime} be the $(q+1) \times(q+1)$ matrix obtained from H by adding one row and one column of 1s. Verify that H^{\prime} is a Hadamard matrix. This is Paley's construction of Hadamard matrices. The first dimension not covered by Paley's nor Sylvester's construction is $n=36$. Other constructions are known there. The first dimension where no Hadamard matrix is known is 668 .
4. Wozencraft ensemble: Show that for any $0 \leq \delta \leq 1$ and $\varepsilon>0$ there is a family of 2^{k} codes such that all but an ε fraction of them are $\left[(1+\delta) k, k,\left(H^{-1}\left(1-\frac{1}{1+\delta}\right)-\varepsilon\right)(1+\delta) k\right]_{2}$-codes, i.e., almost all codes nearly match the Gilbert-Varshamov bound for rate $\frac{1}{1+\delta}$. Use the family of linear codes $\left\{S_{\alpha} \mid \alpha \in \mathbb{F}_{2^{k}}\right\}$ where S_{α} is obtained from the linear code $\{(x, \alpha x) \mid x \in$ $\left.\mathbb{F}_{2^{k}}\right\} \subseteq \mathbb{F}_{2}^{2 k}$ by removing some arbitrary $(1-\delta) k$ coordinates from all codewords. Deduce that Justesen codes can match the Zyablov bound for all large enough rates.

