Instructions as before.

1. Stronger KKL theorem: Prove the following strengthening of the KKL theorem. There exists a $c>0$ such that if $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ is a balanced function with $\operatorname{Inf}_{i}(f) \leq \delta$ for all i, then $\mathbb{I}(f) \geq c \log (1 / \delta)$.
2. Talagrand's lemma: Let $f:\{0,1\}^{n} \rightarrow[-1,1]$ and assume $p=\mathbb{E}[|f|] \ll 1$. Show that $W_{1}(f)=\sum_{|S|=1} \hat{f}(S)^{2} \leq O\left(p^{2} \log (1 / p)\right)$.
3. Generalized Chernoff bound: Let $p\left(x_{1}, \ldots, x_{n}\right)$ be a multilinear polynomial over the reals of degree at most d, and assume that $\mathbb{E}\left[p\left(x_{1}, \ldots, x_{n}\right)^{2}\right]=1$ where the x_{i} are chosen independently from $\{-1,1\}$ (equivalently, this says that the sum of squares of p^{\prime} s coefficients is 1). Then for any large enough t,

$$
\operatorname{Pr}\left[\left|p\left(x_{1}, \ldots, x_{n}\right)\right| \geq t\right] \leq \exp \left(-\Omega\left(t^{2 / d}\right)\right)
$$

where the x_{i} are chosen as before. The case $d=1$ is a version of the Chernoff bound. Hint: use Markov's inequality and a corollary of the hypercontractive inequality that we saw in class.

4. Logarithmic Sobolev inequality:

(a) Using the hypercontractive inequality, show that for any $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ and $0 \leq \varepsilon \leq \frac{1}{2}$,

$$
\left\|T_{\sqrt{1-2 \varepsilon}} f\right\|_{2}^{2} \leq\|f\|_{2-2 \varepsilon}^{2}
$$

(b) Notice that we have equality at $\varepsilon=0$ and use this to deduce

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon}\left\|T_{\sqrt{1-2 \varepsilon}} f\right\|_{2}^{2}\right|_{\varepsilon=0} \leq\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon}\|f\|_{2-2 \varepsilon}^{2}\right|_{\varepsilon=0} .
$$

(c) Show that the left hand side is $-2 \mathbb{I}(f)$.
(d) Show that the right hand side is $-\operatorname{Ent}\left[f^{2}\right]$ where $\operatorname{Ent}[g]$ is defined for non-negative g as $\mathbb{E}[g \ln g]-\mathbb{E}[g] \ln \mathbb{E}[g]$ (with $0 \ln 0$ defined as 0). No need to be 100% rigorous.

This establishes the logarithmic Sobolev inequality, saying that for any $f:\{0,1\}^{n} \rightarrow \mathbb{R}$,

$$
\operatorname{Ent}\left[f^{2}\right] \leq 2 \mathbb{I}(f)
$$

(e) Show that if $f:\{0,1\}^{n} \rightarrow\{-1,1\}$ has $p=\operatorname{Pr}[f=-1] \leq \frac{1}{2}$ then

$$
\mathbb{I}(f) \geq 2 p \ln (1 / p)
$$

For small value of p, this significantly improves the Poincaré inequality $\mathbb{I}(f) \geq 4 p(1-$ p) from Homework 1.
5. Talagrand's open question (\$1000): Fix some $0<\rho<1$. Let $f:\{0,1\}^{n} \rightarrow[0,1]$ and let $\mu=$ $\mathbb{E}[f]$. Note that $\mathbb{E}\left[T_{\rho} f\right]=\mu$ as well. Clearly, Markov's inequality implies that $\operatorname{Pr}\left[\left(T_{\rho} f\right)(x) \geq\right.$ $t \mu] \leq \frac{1}{t}$. Can you improve this upper bound to $o\left(\frac{1}{t}\right)$? perhaps $O(1 /(t \sqrt{\log t}))$? Intuitively, since T_{ρ} smoothes f, one would expect the peaks to shrink.

