Instructions as before.

- 1. **Learning juntas with queries:** Show an algorithm for learning k-juntas in time poly(n, 2^k) using membership queries, without using the Fourier transform.
- 2. **Weakly learning DNFs [1]:** Show that if f is computable by a DNF of size s then $|\hat{f}(S)| \ge \Omega(1/s)$ for some S with $|S| \le \log_2(s) + O(1)$. This is the first step in Jackson's algorithm [2]. Hint: deal separately with the case where there are no small terms. If there is a small term, consider a restriction.
- 3. **Learning noise insensitive functions:** For $f: \{0,1\}^n \to \mathbb{R}$ define the δ -noise sensitivity of f as $\mathbb{NS}_{\delta}(f) = \frac{1}{2}(1 \langle f, T_{1-2\delta}f \rangle)$.
 - (a) Show that for $f: \{0,1\}^n \to \{-1,1\}$, $\mathbb{NS}_{\delta}(f) = \Pr_{x,w}[f(x) \neq f(x+w)]$ where x is chosen uniformly from $\{0,1\}^n$ and w is chosen according to μ_{δ} .
 - (b) Let $C_{\delta,\varepsilon}$ be the class of all $f:\{0,1\}^n \to \{-1,1\}$ with $\mathbb{NS}_{\delta}(f) \leq \varepsilon$. Show that $C_{\delta,\varepsilon}$ can be PAC learned under the uniform distribution from random examples to within accuracy $O(\varepsilon)$ in time $\operatorname{poly}(n^{1/\delta},1/\varepsilon)$.
 - (c) Optional: show that for the majority function, $\mathbb{NS}_{\delta}(MAJ_n) = \Theta(\sqrt{\delta})$ assuming n is large enough.
- 4. **Orthogonal decomposition:** For some $0 , consider the space of functions <math>f : \{0,1\}^n \to \mathbb{R}$ taken with respect to the measure μ_p , i.e., we define the inner product in this space as $\langle f,g \rangle = \operatorname{Exp}_{x \sim \mu_p}[f(x)g(x)]$.
 - (a) Suggest a reasonable choice of an orthonormal basis $\{\chi_S : S \subseteq [n]\}$. Hint: Start with n = 1.
 - (b) For $f: \{0,1\}^n \to \{-1,1\}$ define the influence of the *i*th coordinate as

$$Inf_i(f) = \Pr_{x \sim \mu_p} [f(x) \neq f(x \oplus e_i)].$$

Show how to express it using a decomposition of f in your basis (there is more than one possible solution; try to get a simple expression).

- 5. A variable that is often much smaller than its expectation has high variance: Show that if X is a nonnegative random variable with $\Pr[X > K] = \delta$ and $\exp[X] \ge L > K$ then $\exp[X^2] \ge (L K)^2 / \delta$.
- 6. **Stronger KKL theorem:** Prove the following strengthening of the KKL theorem. There exists a c > 0 such that if $f : \{0,1\}^n \to \{-1,1\}$ is a balanced function with $\text{Inf}_i(f) \le \delta$ for all i, then $\mathbb{I}(f) \ge c \log(1/\delta)$.

References

- [1] A. Blum, M. L. Furst, J. C. Jackson, M. J. Kearns, Y. Mansour, and S. Rudich. Weakly learning DNF and characterizing statistical query learning using Fourier analysis. In *STOC*, pages 253–262, 1994.
- [2] J. C. Jackson. An efficient membership-query algorithm for learning DNF with respect to the uniform distribution. *J. Comput. Syst. Sci.*, 55(3):414–440, 1997. Preliminary version in FOCS'94.