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Abstract. The problem of the computation of a distance between two
probabilistic automata arises in a variety of statistical learning problems.
This paper presents an exhaustive analysis of the problem of computing
the Lp distance between two automata. We give efficient exact and ap-
proximate algorithms for computing these distances for p even and prove
the problem to be NP-hard for all odd values of p, thereby completing
previously known hardness results. We also give an efficient algorithm
for computing the Hellinger distance between unambiguous probabilistic
automata. Our results include a general algorithm for the computation of
the norm of an unambiguous probabilistic automaton based on a monoid
morphism and efficient algorithms for the specific case of the computation
of the Lp norm. Finally, we also describe an efficient algorithm for testing
the equivalence of two arbitrary probabilistic automata A1 and A2 based
on Schützenberger’s standardization with a running time complexity of
O(|Σ| (|A1|+ |A2|)3), a significant improvement over the previously best
algorithm reported for this problem.

1 Introduction

A probabilistic automaton is a finite automaton with transition probabilities. It
represents a probability distribution over the set of all strings [14]. Probabilistic
automata are used extensively in a variety of areas, including text and speech
processing [11], image processing [5], and computational biology [6].

These automata are typically derived from large data sets using statistical
learning algorithms. The convergence of these algorithms is often tested by mea-
suring the distance between the probabilistic automata obtained after consecu-
tive iterations. The computation of the distance between probabilistic automata
is also needed in other learning problems such as clustering when the objects to
cluster, e.g., documents, images, biosequences, are modeled as Hidden Markov
Models (HMMs) or probabilistic automata.

This motivates our study of the computation of various distances between
probabilistic automata. We have previously shown that the relative entropy,
or Kullback-Leibler divergence, of unambiguous probabilistic automata can be
computed efficiently [4] and that, in the general case of arbitrary probabilistic
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automata, the computational cost is at least O(c
√

n/ log n), where c is a constant
and n the size of the automaton [3].

Here, we present an exhaustive analysis of the problem of computing the
Lp distance between two automata. We give efficient exact and approximate
algorithms for computing these distances for p even and prove that the problem
is NP-hard for all odd values of p using a reduction from the Max-clique problem
by [15]. These latter results complete those given by [15] who showed the problem
to be NP-hard for L1 and L∞. We also give an algorithm for computing the
Hellinger distance between unambiguous probabilistic automata. In addition, we
present a general algorithm for the computation of the norm of an unambiguous
probabilistic automaton using a monoid morphism and give efficient algorithms
for the specific case of the computation of the Lp norm.

A problem closely related to that of computing a distance between two prob-
abilistic automata is to test for their equivalence. Our algorithm for computing
the L2 distance of two arbitrary probabilistic automata A1 and A2 provides in
fact a polynomial-time method for testing their equivalence since A1 and A2 are
equivalent iff their L2 distance is null. However, we will describe a more efficient
algorithm based on Schützenberger’s standardization technique [17, 1] with a
running-time complexity of O(|Σ| (|A1|+ |A2|)3), a significant improvement over
the previously best algorithm reported for this problem whose complexity is
O(|Σ| (|A1|+ |A2|)4)) [19].

The remainder of the paper is organized as follows. Section 2 introduces some
basic algebraic definitions and notation related to probabilistic automata needed
for the description of our algorithms. Section 3 presents several algorithms for
the computation of the norm of a probabilistic automaton, including an approxi-
mate solution. The problem of the computation of the Lp distance and Hellinger
distance is examined in detail in Section 4.

2 Preliminaries

Definition 1. Let (K,⊗, 1) be a monoid. A function Φ : (R+, ·, 1)→ (K,⊗, 1) is
said to be a monoid morphism if Φ(1) = 1, Φ(0) = 0, and Φ(x · y) = Φ(x)⊗Φ(y)
for all x, y,∈ R+.

Definition 2 ([10]). A semiring is a system (K,⊕,⊗, 0, 1) such that: (K,⊕, 0)
is a commutative monoid with 0 as the identity element for ⊕; (K,⊗, 1) is a
monoid with 1 as the identity element for ⊗; ⊗ distributes over ⊕: for all a, b, c
in K: (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) and c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b), and
0 is an annihilator for ⊗: ∀a ∈ K, a⊗ 0 = 0⊗ a = 0.

A semiring K is said to be closed if for all a ∈ K, the infinite sum
⊕∞

n=0 an

is well-defined and in K, and if associativity, commutativity, and distributivity

apply to countable sums [13]. K is said to be k-closed if for all a ∈ K,
⊕k+1

n=0 an =
⊕k

n=0 an. More generally, we will say that K is closed (k-closed) for an automaton
A, if the closedness (resp. k-closedness) axioms hold for all cycle weights of
A. In some semirings, e.g., the probability semiring (R+, +, ·, 0, 1), the equality
⊕k+1

n=0 an =
⊕k

n=0 an may hold for the cycle weights of A only approximately,
modulo ǫ > 0. A is then said to be ǫ-k-closed for that semiring.



Definition 3 ([7, 16, 1]). A weighted automaton A = (Σ, Q, I, F, E, λ, ρ) over
a semiring (K,⊕,⊗, 0, 1) is a 7-tuple where: Σ is the finite alphabet of the au-
tomaton, Q is a finite set of states, I ⊆ Q the set of initial states, F ⊆ Q the set
of final states, E ⊆ Q×Σ∪{ǫ}×K×Q a finite set of transitions, λ : I → K the
initial weight function mapping I to K, and ρ : F → K the final weight function
mapping F to K.

Stochastic automata are probabilistic automata such that at each state the
weights of the outgoing transitions and the final weight sum to one.

We denote by |A| = |E|+|Q| the size of an automaton A = (Σ, Q, I, F, E, λ, ρ),
that is the sum of the number of states and transitions of A. Given a transition
e ∈ E, we denote by i[e] its input label, p[e] its origin or previous state and
n[e] its destination state or next state, w[e] its weight (weighted automata case).
Given a state q ∈ Q, we denote by E[q] the set of transitions leaving q.

A path π = e1 · · · ek in A is an element of E∗ with consecutive transitions:
n[ei−1] = p[ei], i = 2, . . . , k. We extend n and p to paths by setting: n[π] = n[ek]
and p[π] = p[e1]. We denote by P (q, q′) the set of paths from q to q′ and by
P (q, x, q′) the set of paths from q to q′ with input label x ∈ Σ∗. The labeling
functions i and the weight function w can also be extended to paths by defining
the label of a path as the concatenation of the labels of its constituent transitions,
and the weight of a path as the ⊗-product of the weights of its constituent
transitions: i[π] = i[e1] · · · i[ek], w[π] = w[e1]⊗ · · · ⊗ w[ek].

The output weight associated by an automaton A to an input string x ∈ Σ∗

is defined by:

[[A]](x) =
⊕

π∈P (I,x,F )

λ[p[π]]⊗ w[π] ⊗ ρ[n[π]]. (1)

Definition 4. A weighted automaton A defined over the probability semiring
(R+, +, ·, 0, 1) is said to be probabilistic if for any state q ∈ Q,

∑

π∈P (q,q) w[π],

the sum of the weights of all cycles at q, is well-defined and in R, and the weights
assigned to the all strings sums to one:

∑

x∈Σ∗ [[A]](x) = 1.

A weighted automaton is said to be unambiguous if for any string x ∈ Σ∗ it
admits at most one accepting path labeled with x. It is said to be deterministic
or subsequential if it has a unique initial state and if no two transitions leaving
the same state share the same input label.

3 Computation of the Norm of a Probabilistic Automaton

The computation of single-source shortest-distances is needed in many of the
algorithms presented in this section and the following ones. We denote by s[A]
the ⊕-sum of the weights of all successful paths of a weighted automaton A when
it is defined and in K. s[A] can be viewed as the shortest-distance from the initial
states to the final states.

When the semiring K is closed, or when A is closed for K, s[A] can be
computed exactly using a generalization of the Floyd-Warshall algorithm in time
O(|A|3) and space Ω(|A|2), assuming a constant cost for the semiring operations
[13].



3.1 Case of Unambiguous Automata

In previous work, we gave a general algorithm for computing the entropy of a
probabilistic automaton by relating this problem to a shortest-distance one [4].
Here, we generalize these results by considering an arbitrary monoid morphism.

Let (K,⊕,⊗, 0, 1) be a closed, or ǫ-k-closed semiring. Let Φ : (R+, ·, 1) →
(K,⊗, 1) be a monoid morphism. We will say that Φ preserves closedness, if for
all x, 0 ≤ x < 1,

⊕∞

n=0 Φ(xn) is well-defined and in K. For a such a morphism,
we can define the Φ-norm of a probabilistic automaton as:

‖A‖Φ =
⊕

x∈Σ∗

Φ([[A]](x)). (2)

Theorem 1. Let (K,⊕,⊗, 0, 1) be a closed or ǫ-k-closed semiring and let Φ :
(R+, ·, 1) → (K,⊗, 1) be a monoid morphism preserving closedness. Then, for
any unambiguous probabilistic automaton A, ‖A‖Φ can be computed exactly in
time O(|A|3).

Proof. The automaton Φ(A) derived from A by replacing each weight x by Φ(x)
is a weighted automaton over the semiring K. Since A is unambiguous, at most
one path in A, π = e1 · · · ek, is labeled with any string x ∈ Σ∗. Since Φ is a

monoid morphism, Φ([[A]](x)) =
⊗k

j=1 Φ(i[ej]), that is the weight of the path

labeled with x in Φ(A). This shows that ‖A‖Φ = s(A) and proves the theorem.
⊓⊔

Theorem 1 provides an algorithm for computing the Φ-norm of unambiguous
probabilistic automata for arbitrary monoid morphisms preserving closedness.
We will briefly illustrate two applications of the theorem.

(a) Entropy of a Probabilistic Automaton.

Let K denote (R ∪ {+∞,−∞})× (R ∪ {+∞,−∞}). For pairs (x1, y1) and
(x2, y2) in K, define the following :

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1 + y2) (3)

(x1, y1)⊗ (x2, y2) = (x1x2, x1y2 + x2y1) (4)

Then, the system (K,⊕,⊗, (0, 0), (1, 0)) defines a commutative semiring [2,
8, 4], called the entropy semiring. It can be shown [4] that the function
Φ : (R+, +, ·, 0, 1) → (K,⊕,⊗, (0, 0), (1, 0)) defined by: ∀x ∈ R+, Φ(x) =
(x,−x log x), is a monoid morphism preserving closedness. Thus, the norm-
Φ of an unambiguous probabilistic automaton can be computed efficiently
using a single-source shortest-distance algorithm. Its second component is
exactly the entropy of A, thus this provides an efficient and simple algo-
rithm for computing the entropy of A.

(b) Norm Lα of a Probabilistic Automaton, α ∈ R+.



The function Φ : (R+, +, ·, 0, 1) → (R+, +, ·, 0, 1) defined by Φ(x) = xα is
clearly a monoid morphism. Since for 0 ≤ x < 1, 0 ≤ xα < 1, it also pre-
serves closedness. Thus, the Lα-norm of an unambiguous probabilistic au-
tomaton A can be computed efficiently using a shortest-distance algorithm.
In particular, the Bhattacharya norm, i.e., L 1

2

-norm, of A can be computed

efficiently.

3.2 General Case

In general, a probabilistic automaton may not be unambiguous. But, the Lp

norm can still be computed in polynomial time for any integer p ≥ 1.

Theorem 2. The Lp-norm of a probabilistic automaton A can be computed ex-
actly in time O(|A|3p) time and Θ(|A|2p) space.

Proof. Let A(p) denote the automaton obtained by intersecting A with itself p−1
times. Then, by definition of intersection, (s[A(p)])1/p represents the Lp norm of

A. The cost of intersection to create A(p) is in O(|A|p). ⊓⊔

3.3 Approximate Computation

Here we consider the specific case of the computation of the Lp norm of a prob-
abilistic automaton. Our results can be generalized to cover more general cases,
in particular in the case of unambiguous automata.

Since for any ǫ > 0, a probabilistic automaton is ǫ-k-closed for the proba-
bility semiring, instead of the (generalized) Floyd-Warshall algorithm, we can
use a single-source shortest-distance algorithm to compute s[A] [13]. This algo-
rithm works with any queue discipline, its space complexity is linear which is
significantly more efficient than the Floyd-Warshall algorithm.

The time complexity of the algorithm depends on the queue discipline used.
With a breadth-first queue discipline (as in the Bellman-Ford shortest-distance
algorithm), an analysis similar to [4] can be used to show that the overall com-
plexity of this approximate algorithm is:

O(|Q| + (|E|+ |Q|) log(1/ǫ)

log(1/|λ2|)
). (5)

For ǫ exponentially smaller than |λ2| (ǫ = |λ2|d), the cost in complexity is only
linear: O(|Q|+ d(|E|+ |Q|)). Other queue disciplines may lead to more efficient
algorithms, depending on the probabilistic automaton considered.

4 Computation of Distances between Probabilistic
Automata

There are several standard distances used to compare distributions which can be
used in particular to compare probabilistic automata. Here are the definitions of
some of the most commonly used ones, the relative entropy or Kullback-Leibler



divergence, and the Lp distance between two distributions q1, q2 over a discrete
set X :

D(q1 ‖ q2) =
∑

x∈X

q1(x) log
q1(x)

q2(x)

Lp(q1, q2) =
(

∑

x∈X

(q1(x) − q2(x))p
)1/p

Hellinger(q1, q2) =
(

∑

x∈X

(
√

q1(x) −
√

q2(x))2
)1/2

.

(6)

Since we have previously specifically studied the problem of the computation of
the relative entropy [4, 3], in what follows, we will focus on the computation of
the Lp distance and the Hellinger distance.

4.1 L2p Distance of Probabilistic Automata

In [15], the authors give an approximate algorithm to compute the L2 distance
between two HMMs. Their algorithm applies to the specific cases of HMMs in
which each state belongs to at most one cycle.3 This section presents a simple
and general algorithm for the computation of the L2p distance of two arbitrary
probabilistic automata, for p ∈ N.

Our algorithm computes (L2p(A1, A2))
2p. The L2p distance between A1, A2

can then be obtained straightforwardly by taking the 2pth root. (L2p(A1, A2))
2p

can be rewritten as:

(L2p(A1, A2))
2p =

∑

x∈Σ∗

|[[A1]](x)− [[A2]](x)|2p =
∑

x∈Σ∗

([[A1]](x)− [[A2]](x))2p

=
∑

x∈Σ∗

2p
∑

i=0

(

2p

i

)

([[A1]](x))i(−[[A2]](x))2p−i (7)

=

2p
∑

i=0

(

2p

i

)

(−1)i
∑

x∈Σ∗

([[A1]](x))i([[A2]](x))2p−i. (8)

Let T (i, 2p− i) denote
∑

x∈Σ∗([[A1]](x))i([[A2]](x))2p−i. Note that if A1, A2 are
acyclic, then one can compute T (i, 2p− i) exactly using a generalization of the
single-source shortest-distance algorithm [13] that works for arbitrary semirings,
in linear time O(|A1|+ |A2|).

Next, let us consider the case of unambiguous automata A1, A2. If Ai =
(Σ, Qi, Ii, Fi, Ei, λi, ρi), i = 1, 2, then the transitions in the intersection au-
tomaton A = A1 ∩A2 are defined according to the following rule:

(q1, a, w1, q
′
1) ∈ E1 and (q2, a, w2, q

′
2) ∈ E2 ⇒ ((q1, q2), a, w1w2, (q

′
1, q

′
2)) ∈ E.

3 For more general HMMs, they claim without proof that an iterative version of their
method yields an approximate algorithm that works in time O((|A1|+|A2|)6p), where
A1 and A2 are the HMMs considered. The approximation does not appear explicitly
in this complexity term however.



Since we are dealing with unambiguous automata, we can avoid the re-computation
of the intersection automaton for different is. During intersection, instead of
multiplying w1 and w2, we can keep instead the pair (w1, w2). Then, we only
need to intersect A1 and A2 once, and modify the weight of each transition in
the intersection automaton for different is in the computation of T (i, 2p − i)
as ((q1, q2), a, (wi

1(w2)
2p−i), (q′1, q

′
2)). Running the shortest-distance algorithm

over the intersection automaton with weights modified as described above yields
T (i, 2p− i). Computing the intersection automaton takes O(|A1||A2|) time.

Thus, if we use the exact algorithm to compute the shortest-distance, then
for each i, computing T (i, 2p− i) costs O(|A1 ∩ A2|3) time and Θ(|A1 ∩ A2|2).
Therefore, the time complexity of computing the 2p-distance between A1, A2 is
O((2p)|A1 ∩A2|3) and the space complexity Θ(|A1 ∩A2|2).

Theorem 3. The L2p distance of unambiguous probabilistic automata can be
computed exactly in time O(2p|A1|3|A2|3).

Note that this theorem significantly improves the result of [15], which is expo-
nential in p. Thus, for unambiguous automata, our algorithms are, to the best of
our knowledge, the only polynomial time algorithms for computing the 2p norm
exactly.

For the computation of the L2p-distance of arbitrary automata, we can no
longer intersect A1, A2 just once. Since there may be multiple paths in Ai, i = 1, 2
with the same label, cross terms appear in T (i, 2p−i). This makes it necessary to
perform 2p separate intersections for each i. The computational cost and space
complexity of intersection to compute T (i, 2p− i) is in O(|A1|i|A2|2p−i). Thus,
the exact shortest-distance algorithm has complexity O((|A1|i|A2|2p−i)3). This
leads us to the following result.

Theorem 4. The L2p distance of two arbitrary probabilistic automata A1 and

A2 can be computed in time
∑2p

i=0 O((|A1|i|A2|2p−i)3) = O((|A1|+ |A2|)6p).

Note that our algorithm for computing the L2p distance of two arbitrary
probabilistic automata A1 and A2 clearly also provides an efficient method for
testing their equivalence since A1 and A2 are equivalent iff their Lp distance is
null. For p = 1, our exact algorithm can be used to test for equivalence in time
O((|A1||A2|)3). However, the standardization algorithm of Schützenberger [17]
can be used to derive a more efficient algorithm.

Theorem 5. The equivalence of two arbitrary probabilistic automata A1 and A2

can be computed in time O(|Σ| (|A1|+ |A2|)3).

Proof. The standardization algorithm of Schützenberger [17, 1] applies to any
weighted automaton defined over a field. It leads to a representation of a weighted
automaton with the smallest number of states. The algorithm requires the con-
struction of bases for vectorial spaces for which spanning sets are known. Using
LUP decompositions, the complexity of the standardization algorithm applied
to a weighted automaton A is in O(|Σ||A|3).

For the purpose of equivalence, we may view a probabilistic automaton as an
automaton over the field (R, +, ·, 0, 1). Since negation is allowed over this field,
we can construct the automaton A = A1−A2, which can be done in linear time,



and apply standardization. A1 and A2 are equivalent iff A is equivalent to the
null weighted machine, that is iff after standardization A has no state. Thus, this
leads to an algorithm for testing the equivalence of two probabilistic automata
A1 and A2 with overall complexity O(|Σ| |A|3) = O(|Σ| (|A1|+ |A2|)3). ⊓⊔

To our knowledge, this is the most efficient algorithm for testing the equivalence
of probabilistic automata. The best algorithm previously reported in the liter-
ature was that of Wen-Guey Tzeng whose complexity is O(|Σ| (|A1| + |A2|)4))
[19]. The alphabet factor does not appear in the expression of the complexity
reported by the author most likely because the proof is restricted to a binary
alphabet. The technique described by Wen-Guey Tzeng is in fact closely related
to the standardization algorithm of Schützenberger [17], which the author was
apparently not aware of.

4.2 L2p+1 and L∞ Distance of Probabilistic Automata

It was shown by [15] that the problem of computing the L1 or L∞ distance
of two probabilistic automata is NP-hard, even for acyclic automata. Here, we
extend these results to the case of arbitrary L2p+1 distances, where p ∈ N.

Our proof of the hardness of computing the L2p+1 distance between two
acyclic probabilistic automata is by reduction from the Max-clique problem and
is based on a technique used by [15].

Given a graph G = (V, E), one can construct an acyclic weighted automa-
ton AG over the probability semiring of size polynomial in |V | + |E| such that
[[A]](x) = k for some string x iff G has a clique of size k. AG is constructed as
follows. It has a single initial state qs and a single final state qt. For each i ∈ V ,
it admits the following transitions:

(a) a transition from qs to qi,0 with label ǫ and weight 1;
(b) a transition from qi,n to the final state qt with label ǫ and weight 1;
(c) a transition from qi,i−1 to qi,i with label i and weight 1;
(d) a transition from qi,j−1 to qi,j with label ǫ and weight 1 for each j 6= i; and
(e) if (i, j) ∈ E, a transition from qi,j−1 to qi,j with label j and weight 1.

The size of AG is clearly polynomial in |V | + |E|. Given a set S ⊆ V , let
[S] denote the ordered tuple with elements of S. For example, if S = {1, 2, 5, 3},
then [S] = (1, 2, 3, 5). By construction, for any clique S, AG contains a distinct
path labeled with [S] starting at the initial state and going through qi,0 for each
i ∈ S. Since all accepting paths have the same weight 1, this proves the property
that [[A]](x) = k for some string x iff G has a clique of size k.

The automaton AG is not probabilistic. But, an equivalent probabilistic au-
tomaton without ǫ-transitions can be computed from AG by using the weighted
ǫ-removal algorithm [12], and a weight-pushing algorithm can be used to nor-
malize the sum of its weights to one [11]. For the sake of the simplicity of the
presentation, we will continue to work with AG. Our results can be generalized
to the case of a probabilistic automaton without ǫ-transitions without difficulty.

Theorem 6. The problem of computing the L2p+1 distance of two probabilistic
automata is NP-hard.



Proof. Using the notation used in [15], let ak denote the number of strings
accepted by AG with weight exactly k. Thus determining the maximum k such
that ak 6= 0 is equivalent to determining the size of the largest clique.

For each i ∈ {0, 1, . . . , n}, let Ci denote the constant weighted automaton
assigning the same weight i to all subsequences of {1, . . . , n} and weight 0 to all
other strings. By definition of the L2p+1 norm,

∀i ≥ 0, [L2p+1(Ci, AG)]2p+1 =

n
∑

j=0

aj |i− j|2p+1 (9)

This defines a system of linear equation with unknown variables aj , j = 0, . . . , n.

Let M ∈ R
(n+1)×(n+1) be the matrix defined by Mi,j = |i−j|2p+1, i ∈ {0, 1, . . . , n}.

If M is invertible, then all ajs can be defined with respect the L2p+1 distance of
the automata Ci and AG, which will prove the statement of the theorem.

This matrix is a specific Toeplitz matrix, but it is not straightforward to
compute its determinant [15]. Instead, we can do our reasoning in Z3. Indeed,
in Z3, the coefficients of M are either 0, 1, or −1, regardless of the value of p.
The determinant of M in Z3 is given by:

det(M) =

{−1 if n + 1 = 2 mod 3
1 if n + 1 = 0 mod 3
0 if n + 1 = 1 mod 3.

(10)

We delay the proof of this fact to Lemma 1.

This implies that for all n ∈ N such that n is of the form n ≡ ±1 mod 3, the
matrix M of size (n + 1)× (n + 1) defined by Mi,j = |i− j|2p+1, i ∈ {0, 1, . . . , n}
is invertible in R. Therefore, for n ≡ ±1 mod 3, one can compute the matrix A
and determine the size of the largest clique in the original graph G. This leaves
us only with the case where n ≡ 0 mod 3 in the original graph G = (V, E).
But, in this case, one can add a dummy vertex to G that is connected to all
other vertices of V . Doing so increases the size of the largest clique by exactly
one, and yields a graph G′ = (V ′, E′) with |V ′| ≡ 1 mod 3. Since the size of
the largest clique in G is one less than the size of the largest clique in G′, the
reduction is complete. Thus, the problem of determining the computing 2p + 1
distance between two probabilistic automata is NP-hard. ⊓⊔

We conjecture that the problem of computing the L2p+1 distance, or L∞, is in
fact undecidable. Note that it was shown by [15] that, in view of the hardness
of approximation results for cliques of [18, 9], even a polynomial approximation

of the L∞ distance within a factor of n
1

4
−ǫ is impossible unless NP = P.

Lemma 1. The determinant of M in Z3 is given by

det(M) =

{−1 if n + 1 = 2 mod 3
1 if n + 1 = 0 mod 3
0 if n + 1 = 1 mod 3.

(11)

Proof. Let M [n + 1] ∈ R
(n+1)×(n+1) be the matrix defined by Mi,j = |i− j|2p+1

mod 3. Note that in Z3, |i − j|2p+1 mod 3 = |i − j| for all p ∈ N. Let Ri, Cj

denote the ith row and the jth column of M respectively.



Case 1. n + 1 = 1 mod 3. Let n + 1 = 3k + 1 for some k ∈ N. For all
j ∈ {1, . . . , 3k + 1},

M3k+1,j = |3k + 1− j|2p+1 mod 3 = (1− j)2p+1 mod 3 (12)

= −|1− j|2p+1 mod 3 = −M1,j (13)

Since the last row is a scalar multiple of the first row, det(M) = 0 for n + 1 = 1
mod 3.

Case 2. n + 1 = 2 mod 3. Let n + 1 = 3k + 2 for some k ∈ N. We perform
the following row and column operations on M [3k + 2]:

R1 ← R1 + R3k+1 C1 ← C1 + C3k+1. (14)

Note that in Case 1, we observed that R3k+1 was a linear combination of R1.
Thus the above row operation will annihilate all but the last the entry in the first
row (and by symmetry, in the first column) to 0. Developing the determinant of
M ′ along R1, followed by C1, and simplifying the powers of −1, one obtains:

det(M) = det(M ′) = − det(M [3k]) (15)

Case 3. n + 1 = 0 mod 3. Let n + 1 = 3k for k ∈ N. We perform the
following operations on M [3k]:

R1 ← R1 + R3k−2 C1 ← C1 + C3k−2

R3k ← R3k + R3 C3k ← C3k + C3

R2 ← R2 + R1 C2 ← C2 + C1

R3k−1 ← R3k + R3k−1 C3k−1 ← C3k + C3k−1

R2 ← R2 + R3k−1 C2 ← C2 + C3k−1

(16)

The resulting matrix has zeros everywhere in the first and last row and column,
except for M1,3k = 1, M3k,1 = 1. Let S denote the submatrix induced by rows
i and j such that for i, j ∈ {2, . . . , 3k − 1}. For S, we have S1,1 = 1, S1,3k−2 =
−1, S3k−2,1 = −1. The remainder of the entries in the first row and the first
column of S are all 0. Further, the submatrix of S induced by rows i and j
such that i, j ∈ {2, . . . , 3k − 2} is the same as M [3k − 3]. The determinant of S
satisfies det(S) = det(M [3k− 3])− det(M [3k− 4]) (developing det(S) along the
first row). Developing the determinant of matrix M after the row and column
operations described above along R1 followed by R3k (both these rows have only
one non-zero entry, namely, M1,3k = M3k,1 = 1) yields:

det(M [3k]) = − det(S) = det(M [3k − 4])− det(M [3(k − 1)]), (17)

and ends the proof. ⊓⊔

4.3 Hellinger Distance of Probabilistic Automata

The ideas presented in the previous section can be used in a straightforward
manner to compute the Hellinger distance of two unambiguous probabilistic au-
tomata. The Hellinger distance Hellinger(A1, A2) of two probabilistic automata
A1, A2 is given by:

Hellinger(A1, A2) =
(

∑

x∈Σ∗

(
√

[[A1]](x)−
√

[[A2]](x))2
)1/2

. (18)



Thus,

[Hellinger(A1, A2)]
2 =

∑

x∈Σ∗

(
√

[[A1]](x)−
√

[[A2]](x))2 (19)

=
∑

x∈Σ∗

[[A1]](x) +
∑

x∈Σ∗

[[A2]](x)− 2
∑

x∈Σ∗

√

[[A1]](x)[[A2]](x)

= 2(1−
∑

x∈Σ∗

√

[[A1]](x)[[A2]](x)) (20)

The problem of computing the Hellinger distance between A1, A2 therefore re-
duces to efficiently computing

∑

x∈Σ∗

√

[[A1]](x)[[A2]](x). Once again, as long as
A1 and A2 are unambiguous there is at most one accepting string with label x in
A1 ∩A2. Intersecting A1 and A2 over the probability semiring, the weight of the
transition corresponding to the intersection of the transitions e1 = (q1, a, w1, q

′
1)

and e2 = (q2, a, w2, q
′
2) is given by w1w2.

The function Φ : (R+, +, ·, 0, 1) → (R+, +, ·, 0, 1) defined by Φ(x) =
√

x
is clearly a monoid morphism. Since 0 ≤ x < 1, 0 ≤ √x < 1, it also pre-
serves closedness. Since the Φ norm of the intersection automaton is precisely
the quantity we are interested in, we obtain an efficient algorithm to compute
the Hellinger distance. The complexity of this computation is the same as the
complexity of the shortest distance algorithm on the intersection automaton
A1 ∩ A2. If A1, A2 are acyclic, then the shortest-distance computation can be
done in linear time, i.e. O(|A1 ∩A2|). For A1, A2 unambiguous, one could com-
pute the Hellinger distance exactly in time that is cubic in the size of the in-
tersection automaton and space that is quadratic using a generalization of the
classical Floyd-Warshall all-pairs shortest-distance algorithm that works for ar-
bitrary closed semirings. However, a more efficient approximate solution can be
obtained using the general single-source shortest-distance algorithm [13] that
uses only linear space.

5 Conclusion

We examined the problem of the computation of several standard distances
between probabilistic automata. We showed that in each case, the problem can
be viewed as a shortest-distance computation over an appropriate semiring. In
each case, we either gave an efficient algorithm for the computation of the norm
of a probabilistic automaton or the distance between two probabilistic automata,
or showed the intractability of the problem.

Our algorithms can be used to compute distances between very large proba-
bilistic automata. Some of our results could perhaps be extended to the case of
finitely ambiguous probabilistic automata. Many of our results can be straight-
forwardly extended to the case of weighted tree automata.
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