
I/O (Lecture 15)
Architecture

Communication methods CPU/I/O

I/O synchronization methods

Device Driver

More CPU Stuff (Lecture 16)
Memory mapping (mmap)

Context switching (switching from one process to another)

Bus-style architecture
PCIE Architecture

1. Explicit I/O instructions
1. inb , outb (b stands for bytes), inw outw ..
2. inb(0x1F7, 0x20) 0x1F7 -> port , 0x20 -> command

2. Memory-mapped I/O
1. special memory addresses connected to device registers

3. Direct memory access (DMA)
1. device can transfer data directly to/from memory without CPU
2. CPU will run for other tasks during the transfer

1. Busy waiting
2. Polling
3. Interrupts

the middle layer between hardware and the Os kernel

Direct file access through memory operations
mmap: moving at least one page at a time

switching the view of the memory

switching the registers

User-level threading

Two methods:

Disk (Lecture 17)
Physical strcuture of a disk

Geometry

Performance Factors

optimizations:

File System (18-19)
What is a file system:

kernel only see as one process

custom library to do these

cooperative: yeild
preemptive: uses signal/timers

platters

spindle
head
acutator arm

Track
Sector

Cylinder

seek time
rotation delay

transfer time

read-ahead caching
write caching

track skewing
Disk scheduling

persistence for data

operations:

Goal: have as few disk accesses as possible with minimal overhead

Implementation

How to Allocate blocks?

FFS

Bitmap allocation

Crash recovery (Lecture 20)
Key: how do we maintain consistency?

Approach

Hard links/soft links

NFS (Lecture 21)

maps human-friendly names to disk blocks

read/write/delete, ...

Files -> inodes (metadata, data)
Directory (filename -> inodes)

/ root
. current dir
.. parent dir

contiguous
linked

indexed allocation (multi-level indexed allocation)

cylinder groups
blocks size increase

1. ad-hoc (fsck)

2. Copy-on-write
3. journaling (redo/undo)

1. txbegin/txend

RPC: remote procedural call

NFS architecture
VFS

important property: stateless!

File handler (FS id, i-node, gen #)

How the semantics in file operations in NFS different from standard unix file operations
semantics

"close-to-open consistency"

Stack smashing (Lec 22)
Buffer overflow

Nop

Defenses:

Trusting Trust (Lec 23)

Unix Security (Lec 24)
Setuid program

Summary (Lec 25)

stack canary
address space layout randomization

Write XOR execute
return-oriented programming

loading and execxuting programs
power-up to terminal

