
CS202 (003): Operating Systems
File System IV

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last Time

RPC (Remote Procedure Call)
A mechanism that allow programs to call procedures on

other computers across a network

Make remote function calls appear similar to local ones

Direct memory access (fast!)
Predictable performance

But, only works w/ local resources

Access remote services/resources
without worrying about distributed/network issues

But, more things might go wrong
(failures, network latency, distributed transactions)

One of the building blocks for client/server systems

Client/server system

Provide servers/resourcesRequest services/resources

client server

Network protocols

Example: web browser/servers, database client/servers, …RPC: Client-Server Communication Model

Client

App Stubs

"f" ()

Server

Skeletons f

return
53

"f", arg1, arg2

network message

53

Networked file systems
Look like a file system to the application,

but the data potentially stored on another machine
Reads/writes must go over the network

Disadvantages

Benefits

Easy to share if files available on multiple machines

Easier to administer servers than clients

Access way more data than fits on your local disk

Network + remote buffer cache faster than local disk (in certain cases)

Network + remote disk slower than local disk

Network or server fail even when client is still running

Complexity and security issues

NFS: Network File System

https://web.stanford.edu/class/cs240/readings/nfs.pdf

NFS: Network File System

https://web.stanford.edu/class/cs240/readings/nfs.pdf

NFS implements vnode operations through RPC
open(“/usr/jo/lab1.c”,	…)

Lookup(“/usr”)

fh1	=	(FS	id,	i#,	gen#)

Lookup(fh1,	“jo”)

fh2	=	(FS	id,	i#,	gen#)

Lookup(fh2,	“lab1.c”)

fh3	=	(FS	id,	i#,	gen#)

write(fd,	buf,	sz);

Write(fh3,	offset,	data,	size)

return	code

Why not embed file name in file handle?
(file names can change; would mess everything up. client needs
to use an identifier that's invariant across such renames.)

How does client know what file handle to send?
(stored with vnode)

Statelessness of NFS
Every network protocol request contains all of the information needed to carry out that

request, without relying on anything remembered from previous protocol requests.

Are all NFS operations idempotent?
(i.e., performing the op multiple times has the same effect as performing it once)

Disadvantages

Benefits simplifies implementation, failure recovery

mess up w/ traditional unix semantics

Transparency

Transparency requires that the system calls mean the same things

Gen # What if client A deletes a file and it (or another client) creates a
new one that uses the same i-node?

The server maintains a generation number in each i-node on disk
Every time an i-node is reallocated (used for a new file), its generation number is incremented
When a client gets a file handle (FH) through operations like LOOKUP, the current generation

number is included in that file handle

For every client request, the server compares two numbers:
1. The generation number in the client's file handle

2. The current generation number stored in the i-node on disk
If they match: The request is valid and proceeds normally

If they don't match: The client gets a "stale FH" error when trying to READ() or WRITE()

Non-traditional Unix Semantics
Error returns on successful operations

Non-traditional Unix Semantics
Close-to-open consistency

When client A writes and close a file, Client B will only see those changes after opening the file

Non-traditional Unix Semantics
Close-to-open consistency

Server must flush to the disk before returning

The server has to make sure, before returning:
1. Inode with new block # and new length safe on disk
2. Indirect block safe on disk

Writes have to be synchronous

Would this case performance issue?

Non-traditional Unix Semantics
Would this case performance issue?

No, because there are caching (at the client; not all RPCs go to server. although write go to the server in NFSv3, they don’t cause disk accesses necessarily)

Read-caching
(useful when re-reading files)

Write-caching
(improve performance)

Caching of file attributes
(helps with command such as `ls -l`)

Caching of name->fh mapping
(Caches path prefixes (e.g., /home/jo))

But, now you have to worry about coherence and semantics!

Close-to-open consistency

When client A writes and close a file, Client B will only see those changes after opening the file

Non-traditional Unix Semantics
Close-to-open consistency

When client A writes and close a file, Client B will only see those changes after opening the file

1. writing client forces dirty blocks during a close()
2. reading client checks with server during open(): “is this data current?”

Hmmm, why not a stronger guarantee?

Trading stronger guarantee for better performance!

Obviously, this might cause issues, for example:
1. Errors might occur on close() rather than write()
2. Legacy applications that don't check close() return values might fail
3. Certain usage patterns don't work well, such as using "tail -f" on one client

while another client writes to the file

Non-traditional Unix Semantics
Server failure

Previously: open(“some_file”, RD_ONLY) failed if “some_file” does not exist

Now: app might hang while trying to access the file

Deletion or permission change of open files

What if Client A deletes a file that Client B has “open”?

Previously: Client B reads still work (file exists until all clients close() it)

Now: Client B reads fail

What if Client A make the file inaccessible to others while Client B has the file open()?

Previously: Nothing happens

Now: Client B reads fail

……

Security
 NFS's only security measure is IP address verification (which is quite weak)

Previously: Unix enforces read/write protections — cannot read my files w/o passwords

Now: Server believes whatever UID appears in NFS request (and anyone can put whatever in the request)

Not extremely vulnerable because of how FH works

Example	structure	(simplified):	
struct	file_handle	{	
				uint32_t	filesystem_id;					//	Random	unique	identifier	
				uint32_t	inode_number;						//	File	system	location	
				uint32_t	generation_number;	//	Changes	when	inode	is	reused	
				uint8_t		extra_data[20];				//	Additional	metadata	
}

It does not solve all types
of attack though!

Vulnerabilities are technically fixable (strong auth, secure protocols, …),
but hard to reconcile with the stateless design

Quiz Time!

