
CS202 (003): Operating Systems
File System III

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last Time

Problem setup

A lot of data structures are involved in implementing a file system:
bitmap of free blocks, directories, inodes, indirect blocks, data blocks, etc.

We want these data structures to be consistent (i.e., certain invariants to hold)

We also want to ensure that data on the disk remains consistent

Key issue: crashes or power failures

Some more problematic optimizations

Remember write-back caching and non-ordered disk writes?

OS delays writing back modified disk blocks
modified disk blocks can write to disk in

an unspecified order

What happen if something goes wrong in
any of these operations?

File System Write Operation

C Program
fd = open();

seek(fd, 4KB);

write(fd, buf, 256);

Inode

0

1 7494

Data Block

data...

7494

Bitmap

0 1 0 0

7494

• Add to inode

• Write data to the block

• Update the bitmap

The system requires some notion of atomicity

Imagine that a crash can happen at any time.
You want to arrange for the world to look sane, regardless of where a crash happens.

Challenge: metadata and data is spread across several disk blocks!

“Hmmm… Can we increase the atomic unit size?”

What a file system designer can leverage on:
Arrange for some disk writes to happen synchronously

(system won’t do anything until these disk write complete)

Impose some ordering on the actual writes to the disk

The system requires some notion of atomicity

Key idea: make “adding data to file” to look atomic!
(an update either occurs or it doesn’t)

High-level operations
It’s impossible to make

it actually atomic

Update from who’s perspective?

Crash recovery

Ad-hoc (“fsck” in textbook)

Copy-on-write approaches

Journaling (i.e. write-ahead logging)

Ad-hoc
Goal: metadata consistency (not data consistency)

too expensive to provide data consistency

Arrange to send file system upstates to the disk in a way that,
if there is a crash, fsck can clean up inconsistencies

update inode
mark inode “allocated”

in bitmap
mark data block

“allocated” in bitmap
update directory write data to file

for example

Disadvantages
(a) need to get the reasoning exactly right

(b) poor performance: multiple updates to the same block require that they are issued separately

(c) slow recovery: need to scan the entire disk

Copy-on-write
Goal: provide both metadata and data consistency, by using more space

disks have gotten larger, space is not at a premium

Never modify a block, instead always make a new copy

https://www.cs.hmc.edu/~rhodes/courses/cs134/sp19/readings/zfs.pdf

CS202 Handout 12

Uberblock

/
0

/home
0

/home/jo
0

/home/jo/lab.c

/home/jo

/home

/

#include ...
int main(..) {
 alloc();
}

Uberblock

/
0

/home
0

/home/jo
0

1

1

1

1

1

/home/jo/lab.c

/home/jo

/home

/

#include ...
int main(..) {
 alloc();
}

Uberblock

/
0

/home
0

/home/jo
0

1

1

1

1

1

(a) Initial State (b) System allocates and creates
new versions of all modified

blocks.

(c) System updates Uberblock to
point to new version of blocks.

/home/jo/lab.c

#include ...
int main(..) {
}

0

0

/home/jo/lab.c

#include ...
int main(..) {
}

0

0

/home/jo/lab.c

#include ...
int main(..) {
}

0

0

Data Block 0 Data Block 0 Data Block 0 Data Block 0 Data Block 0

Figure 1: Copy-on-write filesystem: modifying a data block

1

root block (from ZFS)

The only block in the FS
that is ever modified

inode

modified

create a entirely new block,
writes to the new block

well then we need a
new inode

this also changes the
inode number, which
means that parents
and any directories

hard-linking to the file
have to change

(for this to work,

inode has to store
the list of hard links)

then all the nodes
have to change

so does the
uberblock

The change is committed (i.e. the new
changes are visible after crashes) only when

the uberblock is modified on the disk

Same thing happens when a user appends to a file,
creating another block, and when creating a file

(since the directory inode has to change)

to enable this, the uberblock has to fit
in a sector, to allow atomic updates

/home/jo/lab.c

/home/jo

/home

/

#include ...
int main(..) {
 alloc();
}

Uberblock

0

0

0

0

0

(a) Initial State

/home/jo/lab.c

/home/jo

/home

/

void alloc () {
 ..
}

Uberblock

/
0

/home
0

/home/jo
0

1

1

1

1

0

(b) System allocates and creates
new versions of all modified

blocks.

/home/jo/lab.c

#include ...
int main(..) {
 alloc();
}

0

0

/home/jo/lab.c

/home/jo

/home

/

void alloc () {
 ..
}

Uberblock

/
0

/home
0

/home/jo
0

1

1

1

1

0

/home/jo/lab.c

#include ...
int main(..) {
 alloc();
}

0

0

(c) System updates Uberblock to
point to new version of blocks.

Data Block 0 Data Block 0 Data Block 1 Data Block 0 Data Block 1

Figure 2: Copy-on-write filesystem: adding a data block

2

Uberblock

/
0

/home
0

/home/jo
0

/home/jo/slack

/home/jo

/home

/

0 slack days

Uberblock

/
0

/home
0

/home/jo
0

1

1

1

1

0

/home/jo/slack

/home/jo

/home

/

0 slack days

Uberblock

/
0

/home
0

/home/jo
0

1

1

1

1

0

(a) Initial State (b) System allocates and creates
new versions of all modified

blocks.

(c) System updates Uberblock to
point to new version of blocks.

Data Block 0 Data Block 0

Figure 3: Copy-on-write filesystem: creating a file

3

Copy-on-write
Goal: provide both metadata and data consistency, by using more space

disks have gotten larger, space is not at a premium

Never modify a block, instead always make a new copy

Disadvantages
(a) significant write amplification (any writes require changes to several disk blocks)
(b) significant space overhead: need enough space to code metadata blocks in order to make any changes
(c) need the use of a garbage collection daemon in order to reclaim blocks from old versions of the FS

Benefits
(a) most changes can be committed in any order (which brings performance benefits)

(b) on-disk structure and data is always consistent (no need for fsck, or run recovery)

(c) FS incorporates versioning similar to Git or other tools (requires not throwing away old blocks)

Apparently, we can achieve data consistency when modifications do not modify the current copy

Journaling (borrowed from how transitions are implemented in databases)

Goal: Reduce write/space overhead without violating atomicity

Treat file system operations as transactions:
after a crash, failure recovery ensures

1. committed file system operations are reflected in on-disk data structures
2. uncommitted file system operations are not visible after crash recovery

Record enough information to finish applying committed operations (redo operations)
and/or roll-back uncommitted operations (undo operations)

This information is stored in a redo/undo log

Journaling

Commit point: the point at which there is no turning back

first step commit point last step
for example

can back out cannot back out

… …

What is the commit point in copy-on-write?

Journaling — redo logging (used by ext3 & ext4)

FS computes what would change due to a operation

FS computes where in the log it can write this transaction, and
writes a transactions begin record . Do not have to wait on this.

Superblock
and

Block Descriptors

Journal

Blocks

ext3 disk layout

TxnBegin: TID

Inode updates

Data Bitmap
updates

New data
block

TxnEnd: TID

ext3 journal layout

Figure 4: Redo logging in a filesystem

4

FS writes a record(s) with all the changes it computed in step 1.
FS must wait for changes and TxnBegin to finish written to the disk

Once step 3 finishes, the system writes a transaction end record

Once the TxnEnd has been written, the FS asynchronously performs
the actual FS changes “checkpointing”

Journaling — crash recovery of redo logging

FS starts scanning from the beginning of the log

Every time it finds a TxnBegin entry, it looks for the corresponding
TxnEnd entry

If matching (TxnBegin, TxnEnd) found, FS checkpoints the changes

Recovery is completed once the entire log is scanned

High-level idea:
read through the logs, find committed operations and apply them

How to check whether ops are committed? Look at TxnBegin and TxnEnd!
It is safe to apply the same redo log multiple times

What to log?

Logging can double the amount of data written to the disk
Ext3 and 4 allows user to choose what to log

Default: metadata only (assuming people are fine with data
loss after crash)

Can change to force data to be logged w/ metadata

Journaling — undo logging (Not used in isolation by any file system)

Write a TxBegin entry to the log

For each op, write instructions for how to undo any updates.
Changes to the block can be made right after writes finishes

Wait for in-place changes to finish for all blocks

Write a TxnEnd entry into the block

all changes have been written to the actual FS data structures

Journaling — crash recovery from undo logging

Scan to find all uncommitted transactions from the end of the log

For each such transaction, check whether undo entry is valid
(checksum)

Apply all valid undo entries found

disk back to a consistent state

Disadvantages

Benefits
Changes can be checkpoints to disk as soon as the undo log has been updated

— useful when the amount of buffer cache is low

A transaction is not committed until all dirty blocks have been flushed to their in-place targets

Redo logging vs. Undo logging

Disadvantages

Benefits
Changes can be checkpoints to disk as soon as the undo log has been updated

— useful when the amount of buffer cache is low

A transaction is not committed until all dirty blocks have been flushed to their in-place targets

Disadvantages

Benefits
A transaction can commit without all in-place updates (writes to actual disk locations) being completed

— useful when in-place updates might be scattered all over the disk

A transaction's dirty blocks need to be kept in the buffer-cache until the transaction commits
and all of the associated journal entries have been flushed to disk.

This might increase memory pressure.

Combining Redo/Undo Logging (Done by NFTS)

Goal: allow dirty buffers to be flushed as soon as their associated journal
entries are written. Transactions are committed as soon as logging is done

Reduce memory pressure when necessary, and have greater flexibility when scheduling disk writes

FS computes what would change due to a operation

FS computes where in the log it can write this transaction, and
writes a transactions begin record . Do not have to wait on this.

FS writes both a redo log entry and an undo log entry for each of the
changes computed in Step 1.

In-place changes can be made once the log information is written.

Once TxnBegin and logs are written, write a TxnEnd entry

Once the TxnEnd has been written, the FS asynchronously performs
the actual FS changes

Journaling — crash recovery from redo+undo logging

Scan to find all uncommitted transactions from the end of the log

For each such transaction, check whether undo entry is valid
(checksum)

Apply all valid undo entries found

disk back to a consistent state

FS starts scanning from the beginning of the log

Every time it finds a TxnBegin entry, it looks for the corresponding
TxnEnd entry

If matching (TxnBegin, TxnEnd) found, FS checkpoints the changes

Recovery is completed once the entire log is scanned

Step 1: Redo pass Step 2: Undo pass

Designed for a time when the same Operating System ran on machines with very little
memory (8-32MB), and also on "big-iron" servers with lots of memory (1GB+).

 This was an attempt to get the best of both worlds.

