
Midterm happens in class this Thursday: 75min, 1 cheatsheet (2, sided, letter-sized, NO
SCREENSHOT, please submit cheatsheet)

bring pen/pencil, no calculator/phones

please write answers i could understand , if you find anything unclear, write your assumptions

read the entire exam before start writing

do not write in the back of the exam

coding questions:

all the functions you need are provided

Topics we covered
Process: process view of the machine

one of key abstractions

each process thinks they have exclusive access to both cpu and memory
and this is a illusion
memory layout, what exactly is the "view of the memory"

text/code, data, heap, stack, environment

what are the operations need to be done before/after function call
%rbp, %rsp, %rip ...

PCB: process control block
process state, counter, registers, memory management, etc.
OS maintain all these PCB

how a process is created? system calls
fork, exec, wait, ...
user mode ->(system call) kernel mode

the difference between system call and functoon calls
open, read, write, close,...

Concurrency
to run multiple processes at the same time: fork + exec

to run multiple thread within a single process: threading library
Race conditions: data races



how do we (try our best) to avoid race conditions:
mutex: only one thread access a critical section at a time

init, lock, unlock
disable interrupts, spinlocks, peterson algorithms, ...

condition variables: wait for a condition to become true
wait, signal, broadcast
wait : while loop!

monitor (programming paradigm): Mike Dahlin's coding standard for concurrency
programming

all methods calls are protected by a mutex

Deadlock
mutual exclusion, hold and wait, no preemption, circular wait
how to avoid deadlock

enforce a partial order on the lock you acquire

Therac-25 Case Study

Scheduling
preemptive and non-preemptive scheduling
Metrics: turnaround time, waiting/response time, system throughput, fairness

algorithms
FCFS
SJF, STCF

RR
MLFQ
fair share schedulers

Virtual memory
purpose: memory protection, illusion of large memory, make memory usage more
efficient

address translation: VM address -> PM address
key structure: page tables

multi-level page table

translation process from L1 -> L4
TLB: what policies do we use

Page fault
invalid access
memory is not presented in ?


