
CS202 (003): Operating Systems
Virtual Memory III, Weensy OS

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last Time

Page faults

A reference is illegal, either because it's not mapped in the page tables or because
there is a protection violation.

This is a quite powerful mechanism!
(It turns out you can build interesting functionalities by triggering page faults)

How does OS get involved in page fault (in x86)?

Process constructs a trap frame and transfer execution to an interrupt/trap handler

error code

%rip

cs

rflags

Instruction that caused the trap

code segment (ignore)

former value of rflags

%rsp

ss

%rsp

former value of stack pointer

stack segment (ignore)

%rip now points to the code handle the trap

(using Interrupt Descriptor Table)

[................................ U/S | W/R | P]

U/S: user mode fault / supervisor mode fault

R/W: access was read / access was write

P: not-present page / protection violation

%cr2 holds the faulting virtual address

When page fault happens, the kernel
sets up the process's page entries
properly, or terminates the process

When does page fault occur?

Overcommitting physical memory

“Your program thinks it has 64GB of memory, but your hardware has 16 GB of physical memory”

How does this work?
Disk was (is) used to store memory pages

 Advantages: address space looks huge
 Disadvantages: access to "paged" memory (as disk
 pages that live on the disk are known) are slow

Rough Implementation
On a page fault, the kernel reads in the

faulting page. It may need to send a page to
disk (when satisfy the following TWO):

1. kernel is out of memory
2. the page that it selects to write out is dirty)

What are some other use cases of page fault?

Store memory pages across the network
(Distributed Shared Memory)

On a page fault, the page fault handler went and retrieved the
needed page from some other machine

Copy-on-write
(fork, mmap, …)

When creating a copy of another process, don't copy its memory. Just copy its
page tables, mark the pages as read-only

When a write happens, a page fault results. at that point, the kernel allocates a
new page, copies the memory over, and restarts the user program to do a write

Then, only do copies of memory when there is a fault as a result of a write

Accounting Good way to sample what percentage of the memory pages are written to in any
time slice: mark a fraction of them not present, see how often you get faults

Paging in day-to-day use
Demand paging Program code is loaded into memory only when it's needed, not all at once

Growing the stack
The seemingly contiguous virtual memory can scatter across different locations

in physical memory

BSS page allocation
(Block Started by Symbol)

The OS can save memory by not allocating physical pages for the BSS until the
program actually tries to use variables in this segment.

Shared text
Sharing the read-only parts of a program between multiple processes running

the same program

Shared libraries Multiple programs can use the same library code in memory, saving space

Shared libraries Allowing multiple processes to access the same memory region

Costs of page faults

What does paging from the disk cost?

Average memory access time
(AMAT)

(1 − p) * 𝚖𝚎𝚖𝚘𝚛𝚢_𝚊𝚌𝚌𝚎𝚜𝚜_𝚝𝚒𝚖𝚎 + 𝚙 * 𝚙𝚊𝚐𝚎_𝚏𝚊𝚞𝚕𝚝_𝚝𝚒𝚖𝚎

where p is the prob of a page fault

𝚍𝚒𝚜𝚔_𝚊𝚌𝚌𝚎𝚜𝚜_𝚝𝚒𝚖𝚎(𝚝𝙳) ≈ 𝟷𝟶𝚖𝚜 = 𝟷𝟶𝟽𝚗𝚜𝚖𝚎𝚖𝚎𝚘𝚛𝚢_𝚊𝚌𝚌𝚎𝚜𝚜_𝚝𝚒𝚖𝚎(𝚝𝙼) ≈ 𝟷𝟶𝟶𝚗𝚜

What does need to be to ensure that
paging hurts performance by less than 10%?

p
1.1 * tM > (1 − p) * tM + p * tD

p = 0.1 *
tM

tD − tM
≈

101ns
107ns

= 10−6

Page faults are super-expensive!
“need to pay attention to the slow case if it's really slow and common enough to matter.”

A Cache System

How to decide which entry to throw away if we get a cache miss?

A Cache System
any system that temporarily stores frequency used data

the cache itself is smaller than the the storage it is cached on

Cache Miss
the requested data isn’t in the cache

1. fetch the missing data from the slower main storage
2. If the cache is full, decide which existing entry to evict to make room

VM as a Cache System

How to decide which page to throw away if we get a ‘page-not-present in memory’ fault?

A Cache System
any system that temporarily stores frequency used data

the cache itself is smaller than the the storage it is cached on

•Virtual memory is an abstraction that provides programs with the illusion of a large, contiguous memory space
•Physical RAM is typically much smaller than the virtual address space
•The operating system keeps only a subset of all pages (fixed-size blocks of memory) in physical RAM at any given time
•The rest of the pages are stored on disk (in the swap space or paging file)

Replacement policy

FIFO MIN (optimal) LRU

throw out the oldest
throw away the entry that won’t

be used for the longest time
throw out the least

recently used

Replacement policy

FIFO MIN (optimal) LRU

throw out the oldest
throw away the entry that won’t

be used for the longest time
throw out the least

recently used

How do we evaluate these algorithms?

Input: Reference string (sequence of page accesses)
Cache size (i.e. physical memory)

Output: # of cache evictions (i.e. number of swaps)

Replacement policy

FIFO MIN (optimal) LRU

throw out the oldest
throw away the entry that won’t

be used for the longest time
throw out the least

recently used

Replacement policy

FIFO MIN (optimal) LRU

throw out the oldest
throw away the entry that won’t

be used for the longest time
throw out the least

recently used

Replacement policy (adding new memory)

FIFO MIN (optimal) LRU

throw out the oldest
throw away the entry that won’t

be used for the longest time
throw out the least

recently used

Replacement policy

FIFO MIN (optimal) LRU

throw out the oldest
throw away the entry that won’t

be used for the longest time
throw out the least

recently used

It approximates OPT when:
principle of temporal locality

holds strongly

Pretty decent!

Implementing LRU

In OS, it doubles the memory traffic
(since after every reference, have to move some structure to the head of some list)

In hardware, it’s a lot of work to timestamp each reference and keep the list ordered

Implementing LRU in OS/hardware is a lot of pain!

Approximating LRU

https://www.cs.cornell.edu/courses/cs4410/2018sp/schedule/slides/08-vm.pdf

“Second-chance” algorithm

Generalizing CLOCK: Nth Chance
•With each page, OS maintains a counter to indicate the number of sweeps that page has gone through.
• On page fault, OS checks accessed bit:
◦ If 1, then clear it, and also clear the counter.
◦ If 0, then increment the counter; if count == N, replace page.

Large N implies better approximation to LRU:
e.g., N = 1000 is a very good LRU approximation.
However, a large N implies more work by the OS before a page can be replaced.

N = 1 implies the default clock algorithm.
https://www.cse.iitd.ernet.in/~sbansal/os/lec/l30.html#:~:text=Nth%20chance%3A%20The%20clock%20algorithm,N%20chances%20before%20evicting%20it.

Decent approximations to LRU, assuming that past is a good predictor of the future

Thrashing

Process requires more memory than the system has

Each time a page is brought in, another page, whose contents will soon
be referenced, is thrown out

A program touches 50 pages (each equally likely) but only have 40 physical page frames

If we have enough physical pages, 100ns/ref
If we have too few physical pages, assuming every 5th reference leads to a page fault, then:

4 ref * 100 ns + 1 page fault * 10ms for disk I/O
This lead to 5 refs per (10ms + 400ns) ~ 2ms/ref = 20,000x slowdown!

Thrashing

Process requires more memory than the system has

Each time a page is brought in, another page, whose contents will soon
be referenced, is thrown out

What we want: virtual memory the size of disk with access time the speed of physical memory

What we have: memory with access time roughly at the same magnitude as disk access

Note: this issue is not limited to page access, but we are discussing this issue in the context of page access

Thrashing - what are the causes?

What we want: virtual memory the size of disk with access time the speed of physical memory

What we have: memory with access time roughly at the same magnitude as disk access

process don’t reuse memory (no temporal locality)
OR

process reuses memory but the memory that is absorbing most of the accesses doesn’t fit

Each processes fit the memory individually, but too much to fit for all processes in the system!

Thrashing - What do we do?

Each processes fit the memory individually, but too much to fit for all processes in the system!

Working Set

The pages a process has touched over
some trailing window of time

Only run a set of processes s.t. the union
of their working sets fit in memory

Page fault frequency

Track the metric
(# page faults/instructions executed)

If that thing rises above a threshold, and
there is not enough memory on the

system, swap out the process

Lab 4: Weensy OS
(Yes, it is already released)

In Lab 4, you will write a mini OS, WeensyOS,
that implements the virtual memory architecture

and a few important system calls.

Weensy OS structure

Processes
Files with p-*

Kernel Code
Files with k-*

look at process.h for
sys_page_alloc()	for process allocating memory
 (sys_page_alloc is analogous to brk() or mmap() in POSIX)

exception_return() for when returning back into user space

%rax is what the application return value is

virtual_memory_lookup():

 lookup a physical page using pagetable
 and virtual memory.

virtual_memory_map():

map virtual address -> physical address

typedef	struct	physical_pageinfo	{	
				int8_t	owner;	//kernel,	reserved,	free,	pid	
				int8_t	refcount;	
}	physical_pageinfo;	

static	physical_pageinfo	pageinfo	
[PAGENUMBER(MEMSIZE_PHYSICAL)];	

//	one	physical_pageinfo	struct	per	_physical_	page

look at kernel.h for
process control block (PCB): struct	proc	
* Process registers, process state
* Process page table - a pointer (kernel virtual address, which is the identical physical address)
* to an L1 page table L1 page table's first entry points to a page table, and so on...

pageinfo array

Weensy OS Memory Related

Assume page size to be 4KB, each entry in the page table is 64 bit.
How to we support 3MB of virtual memory? How many L4 pagetable do we need?

(2 L4 page tables)

WeensyOS begins with the kernel and all processes sharing a single address space.
This is defined by the kernel_pagetable.

Kernel's pagetable is identity-mapped: Virtual address X maps to physical address X.
As you work through the project, you will shift processes to use independent address space

where each process can access only a subset of physical memory.

The OS supports 3MB of virtual memory on top of 2MB of physical memory.
(Recall the point of virtualization, from the perspective of the process, it thinks it has 3MB of memory. But in reality, it doesn't.)

Weensy OS Macros and Constants

Bring your questions next
Tuesday!

