
CS202 (003): Operating Systems
Scheduling

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last Time

Have you ever wondered how we
decide what next process/thread to run?

Operating system has to decide on this!

When scheduling decisions happen

Preemptive scheduling
willing to stop one process from running in order to run another

(i) switches from running to waiting state
(ii) switches from running to ready state
(iii) switches from waiting to ready
(iv) exits

Non-preemptive scheduling
run each job to completion before considering whether to run a

new job

(i), (ii), (iii), (iv)

(i), (iv)

New

Ready

Running

Waiting

Terminated

admitted

wait for
I/O or event

completion of
I/O or event

scheduler
dispatchinterrupt

exit

What are the metrics and criteria for making decisions?

Turnaround time
Time for each process to complete

(from arrival)

Waiting/Response/Output time
Time spent waiting for something to happen

Response time: time between when jobs enters system and starts executing

Output time: time from request to first response

System throughout
of processes that complete per unit time

Fairness
(different possible definitions)

Free from starvation
All users get equal time on CPU
Highest priority jobs get most of CPU

……

We call …

Context Switch
Stopping one running process temporality and

resuming (or starting) another process

Context switching has a cost! CPU time in kernel: save/restore registers, switch address spaces
Indirect cost: TLB shootdown, processor caches, OS caches

 More frequent context switches will lead to worse	 throughput (higher overhead)

Scheduling disciplines (without I/O)

FCFS/FIFO SJF and STCF Round-robin (RR)

FCFS/FIFO
Run each job until it’s done

Job Time Needed (s)
P1 24
P2 3
P3 3

P1 P2 P3

Throughput =
3 𝚓𝚘𝚋𝚜

30 𝚜𝚎𝚌𝚘𝚗𝚍𝚜
= 0.1 𝚓𝚘𝚋𝚜/𝚜𝚎𝚌𝚘𝚗𝚍 Avg Turnaround Time =

24 + 27 + 30
3

= 27

How can we lower avg turnaround time? P2 P3 P1

Advantages

Disadvantages

- simple

- no starvation

- few context switches

- short jobs get stuck behind long ones!

SJF and STCF

Job Arrival Time (s) Burst Time (s)
P1 0 7
P2 2 4
P3 4 1
P4 5 4

SJF
Schedule the job whose next CPU

burst is the shortest

STCF
Preemptive version of SJF: if the new job arrived has a shorter time to completion than the

remaining time on the current job, immediately preempt CPU to give to new job

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P1 P2 P3 P2 P4 P1

Advantages

Disadvantages - Discuss later!

- Discuss later!

Round Robin
Let’s start considering response time

(i.e., we are adding a timer our scheduler)

Advantages

Disadvantages - RR does not care about turnaround time!

- Fair allocation of CPU across jobs

- Low average response time when job length vary

- Good for output time if small number of jobs

Preempt CPU from long-running jobs (per time slice/quantum)
=> if a job hasn’t finished by the end of a time slice,

put it to the back of the ready queue

Job Time Needed (in time unit)

P1 50

P2 50

What is the average turnaround
time if we have quantum of 1?

What happens if we use FIFO?

100.5 75

Round Robin
Let’s start considering response time

(i.e., we are adding a timer our scheduler)

Advantages

Disadvantages - RR does not care about turnaround time!

- Fair allocation of CPU across jobs

- Low average response time when job length vary

- Good for output time if small number of jobs

Preempt CPU from long-running jobs (per time slice/quantum)
=> if a job hasn’t finished by the end of a time slice,

put it to the back of the ready queue

How do we choose
quantum size?

- Want much larger than context switch cost (amortization)

- Majority of bursts should be less than quantum

- If too small -> spend too much time context switching

- If too large -> response time suffers (and reverts to FIFO)

Scheduling disciplines (with I/O)

FCFS/FIFO STCF
RR

(100ms quantum)

Job Time Needed
P1 CPU-bound, 1 week
P2 CPU-bound, 1 week
P3 I/O bound, loop: 1ms CPU, 10ms Disk I/O

P1+P2 will take 2
weeks

RR
(1ms quantum)

P1 P2 P3 ……CPU

Disk P3

Disk Utilization =
10𝚖𝚜
201𝚖𝚜

≈ 5 %

P1 P2 P3 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 …
…CPU

Disk P3

Disk Utilization =
10𝚖𝚜
11𝚖𝚜

≈ 91 %

P3 P1 P3 P1CPU

Disk P3 P3

Good disk utilization

Optimal average turnaround time

Low overhead

SJF and STCF

Job Arrival Time (s) Burst Time (s)
P1 0 7
P2 2 4
P3 4 1
P4 5 4

SJF
Schedule the job whose next CPU

burst is the shortest

STCF
Preemptive version of SJF: if the new job arrived has a shorter time to completion than the

remaining time on the current job, immediately preempt CPU to give to new job

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P1 P2 P3 P2 P4 P1

Advantages

Disadvantages
- Long-running jobs get starved

- Does not optimize response time

- Requires predicting the future

- Good disk utilization

- Optimal (minimum) average turnaround time

- Low overhead (no needless preemption)

Predicting CPU burst: EWMA
(exponentially weighted average)

Attempt to estimate future based on the past

tn :(time) length of proc's nth burst
τn+1: estimate for n + 1 burst
τn+1 = α * tn + (1 − α) * τn where 0 < α ≤ 1

Favor jobs that have been using CPU the least amount of time

Key idea in scheduling: Priority

Give every process a number, and give the CPU to the process with highest priority
(which is either the highest/lowest numbers)

We don’t want to use strict priority (that leads to starvation on low priority tasks)

To reduce starvation, we can increase a process’s priority as it waits

Optimizing turnaround + response time: MLFQ
(multi-level feedback queue)

Multiple queues, each with
different priority

RR within each queue
Processes priority changes

overtime

Advantages

Disadvantages
- Cannot donate priority

- Not very flexible

- Not good for real-time and multimedia

- Can be gameable

- Approximate SRTCF (shortest remaining time first)

- It overall gives higher priority that use less CPU time

- Helps reduce average turnaround time and response time for short jobs

Another way of optimization: fair-share scheduler

Try to guarantee that each job obtain a certain percentage of CPU time

Lottery scheduling

Tickets: the share of a resource that a process should receive
The percent of tickles that a process has represents its share of the system resources

Hold a lottery to determine which process should get to run next, every now and then

Let pi has ti tickets
Let T be total # of tickets, T = ∑

i

ti

Chance of winning the next quantum =
ti
T

Control long-term average proportion of
CPU for each process!

Lottery scheduling

Hold a lottery to determine which process should get to run next, every now and then

Advantages

Disadvantages - Latency is unpredictable

- Expected error somewhat high

- Deals with starvation (if you have ticket, you will make progress)

- Don’t worry that adding one high priority job will starve all others

- Adding/deleting jobs affects all jobs proportionally

- Can transfer tickets between processes

- Flexible by using ticket as a currency

Follow-up work to reduce randomness -> Stride Scheduling (see textbook for details)

What Linux does: completely fair scheduler (CFS)

It aims to distribute CPU time fairly among all runnable
processes using a virtual runtime metric.

CFS organizes processes in a red-black tree and selects the one with the lowest virtual
runtime to run next. This approach balances fairness, efficiency, and interactivity.

See the textbook for more details

Scheduling, lesson learned

Write down your goals (policy) before picking the scheduling algorithm (mechanism)

Start from/Compare with the optimal solution, even though it cannot be built

Many schedulers in the system that interact:
mutex, interrupt, disk, network, …

