
CS202 (003): Operating Systems
Concurrency V

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Quiz Time!

Last Time

Performance issues and tradeoffs

Implementation of spinlocks/
mutexes can be expensive

Coarse locks limit
available parallelism

Fine-grained locking leads to
complexity and hence bugs

Mutex costs:
•instructions to execute “mutex acquire”
•sleep/wake up brings resource cost

Spinlock costs:
• cross-talk among CPUs
• cache line bounces
• fairness issues

But, you should still
start with coarse locks!

See “filemap.c” in
handout

*Look up “MCS locks” if curious

Only 1 CPU can execute
anywhere in the part of your

code protected by a lock

Programmability issues

Loss of modularity

What’s the fundamental problem?

To avoid deadlock, you need to
understand how program call each other

You also need to know, whether library
functions is thread-safe when you call it.

If not, add mutex!

https://bonkersworld.net/building-software

Shared memory programming model is hard to use correctly

Some moments of reality about interleaving

Modern multi-CPU hardware does not guarantee sequential consistency

Remember sequential consistency?

https://gunshowcomic.com/648

struct	foo	{	
				int	abc;	
				int	def;	
};	
static	int	ready	=	0;	
static	mutex_t	mutex;	
static	struct	foo*	ptr	=	0;	

void	
doublecheck_alloc()	
{	
				if	(!ready)	{	/*	<--	accesses	shared	variable	w/out	holding	mutex	*/	

								mutex_acquire(&mutex);	
								if	(!ready)	{	
												ptr	=	alloc_foo();	/*	<--	sets	ptr	to	be	non-zero	*/	
												ready	=	1;	
								}	

								mutex_release(&mutex);	

				}	
				return;	
}

Where is the bug?

Yet, if you use mutex correctly…

You don’t have to worry about arbitrary interleaving

You don’t have to worry about what hardware is truly doing

Critical sections execute atomically

Threading library and compiler do the hard work for you

That does not apply if you do low-level programming

move	$1,	0x10000			#	write	1	to	memory	address	10000	
move	$2,	0x20000			#	write	2	to	memory	address	20000	
MFENCE	
move	$3,	0x10000			#	write	3	to	memory	address	10000	
move	$4,	0x30000			#	write	4	to	memory	address	30000

If any memory write after MFENCE (in program order) is visible to another CPU,
then that other CPU also sees all memory writes before the MFENCE

MUST ensure the compiler is not reordering key instructions

MUST know the memory model (of the hardware)

MAY know when to insert memory barriers

"acquire" and "release" in
mutexes need memory barriers

“xchg” on x86 includes an implicit memory barrier

struct	foo	{	
				int	abc;	
				int	def;	
};	
static	int	ready	=	0;	
static	mutex_t	mutex;	
static	struct	foo*	ptr	=	0;	

void	
doublecheck_alloc()	
{	
				if	(!ready)	{	/*	<--	accesses	shared	variable	w/out	holding	mutex	*/	

								mutex_acquire(&mutex);	
								if	(!ready)	{	
												ptr	=	alloc_foo();	/*	<--	sets	ptr	to	be	non-zero	*/	
												ready	=	1;	
								}	

								mutex_release(&mutex);	

				}	
				return;	
}

Where is the bug?

Therac-25

Intended
Setting

Beam
Energy

Beam
Current

Beam
Modifier

Electron
therapy

5-25 MeV low Magnets

X-ray (photon)
therapy

25 MeV
high

(100x)
Flattener

Field
illumination

0 0 None

Therac-25

Intended
Setting

Beam
Energy

Beam
Current

Beam Modifier
(determined by the TT)

Electron
therapy

5-25 MeV low Magnets

X-ray (photon)
therapy

25 MeV high (100x) Flattener

Field
illumination

0 0 None

What can go wrong?

high (100x) MagnetsX

5-25 MeV

25 MeV

X

X

Field illumination

Field illumination

What actually go wrong?

2 software problems and a bunch of non-technical problems

Software problem I

Three threads

Treat Hand Keyboard
sets a bunch of other parameters

(magnets, energy, current)
read the top byte

sets the turntable position
read the bottom byte

invoked when user types, writes the
input to a two-byte shared variable

Software problem I
sets the turntable position

read the bottom byte

invoked when user types, writes the
input to a two-byte shared variable

sets a bunch of other parameters
read the top byte

8s

sets a bunch of other parameters
read the top byte

sets the turntable position
read the bottom byte

invoked when user types, writes the
input to a two-byte shared variable

8s

What should have been done?

Software problem I

Software problem II

What else are wrong?
System Design FailuresSoftware Engineering Issues Human Errors

What else are wrong?
System Design FailuresSoftware Engineering Issues Human Errors

No real quality control
(lack of unit testing …)

Complex and poor code

Use old code without
much thinking

No error documentation
No documentation of

software design

No end-to-end
consistency checks

No backup plan to
tolerate error (like using

hardware interlocks)

Not readable error
messages

Assume software is
always correct

“Think” errors are fixed
without enough formal

reasoning

Company did not inform
the failures, user

weren’t required to
report failures

Operators think re-do
things will fix the problem

Lack of investigation
when failures occur

What should have been done?

Adding a consistency check!

Assume software will make mistakes

Always have back-up failure plans

……

Why are we discussing this?

“There is always another software bug.”

https://medium.com/design-bootcamp/embracing-the-0-bug-policy-a-paradigm-shift-for-bug-free-software-76d18ab53759

 Theme in building systems: be tolerant of inputs / be strict about outputs!

Lab 3 is Released Today!
Lab 2 is Due Tomorrow!

