
CS202 (003): Operating Systems 
Concurrency IV

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202



Last Time



Peterson’s Algorithm

- expensive (busy waiting) 
- requires number of threads to be fixed statically 

- assumes sequential consistency

volatile	bool	flag[2]	=	{false,	false};	
volatile	int	turn;

P0:						flag[0]	=	true;	
P0_gate:	turn	=	1;	
									while	(flag[1]	&&	turn	==	1)	
									{	
													//	busy	wait	
									}	
									//	critical	section	
									...	
								//	end	of	critical	section	
									flag[0]	=	false;	

P1:						flag[1]	=	true;	
P1_gate:	turn	=	0;	
									while	(flag[0]	&&	turn	==	0)	
									{	
													//	busy	wait	
									}	
								//	critical	section	
									...	
									//	end	of	critical	section	
									flag[1]	=	false;	



Spinlock implementation II
/*	pseudocode	*/	
int	xchg_val(addr,	value)	{	
				%rax	=	value;	
				xchg	(*addr),	%rax	
}	

void	acquire	(Spinlock	*lock)	{	
				pushcli();	/*	what	does	this	do?	*/	
				while	(1)	{	
				if	(xchg_val(&lock−>locked,	1)	==	0)	
								break;	
				}	
}	

void	release(Spinlock	*lock){	
				xchg_val(&lock−>locked,	0);	
				popcli();	/*	what	does	this	do?	*/	
}

(i)  freeze all CPUs’ memory activity for address addr 

(ii)  temp	<−	*addr 

(iii)  *addr	<−	%rax	 

(iv)  %rax	<−	temp	 

(v)  un−freeze memory activity



Spinlock implementation II
/*	pseudocode	*/	
int	xchg_val(addr,	value)	{	
				%rax	=	value;	
				xchg	(*addr),	%rax	
}	

/*	optimization	in	acquire;	
call	xchg_val()	less	frequently	*/	
void	acquire(Spinlock*	lock)	{	
				pushcli();	
				while	(xchg_val(&lock−>locked,	1)	==	1)	{	
								while	(lock−>locked)	;	
				}	
}	

void	release(Spinlock	*lock){	
				xchg_val(&lock−>locked,	0);	
				popcli();	
}

Busy waits!

Starvation!



Mutex: spinlock + a queue

typedef	struct	thread	{	
				//	...	Entries	elided.	
				STAILQ_ENTRY(thread_t)	qlink;	//	Tail	queue	entry.	
}	thread_t;

struct	Mutex	{	
				//	Current	owner,	or	0	when	mutex	is	not	held.	
				thread_t	*owner;	

				//	List	of	threads	waiting	on	mutex	
				STAILQ(thread_t)	waiters;	

				//	A	lock	protecting	the	internals	of	the	mutex.	
				Spinlock	splock;	//	as	in	item	1,	above	
};

qlink is a field that allows each thread_t structure 
to be part of a singly-linked tail queue.

qlink field in each thread_t is what allows 
these threads to be linked into that queue



Mutex: spinlock + a queue

typedef	struct	thread	{	
				//	...	Entries	elided.	
				//	Tail	queue	entry.	
				STAILQ_ENTRY(thread_t)	qlink;	
}	thread_t;

struct	Mutex	{	
				//	Current	owner	
				//or	0	when	mutex	is	not	held.	
				thread_t	*owner;	

				//	List	of	threads	waiting	on	mutex	
				STAILQ(thread_t)	waiters;	

				//	A	lock	protecting		
		//the	internals	of	the	mutex.	

				Spinlock	splock;	
};

void	mutex_acquire(struct	Mutex	*m)	{	

				acquire(&m−>splock);	

				//	Check	if	the	mutex	is	held;	
				//	if	not,	current	thread	gets	mutex	and	returns	
				if	(m−>owner	==	0)	{	
								m−>owner	=	id_of_this_thread;	
								release(&m−>splock);	
				}	else	{	
								//	Add	thread	to	waiters.	
								STAILQ_INSERT_TAIL(&m−>waiters,		

									id_of_this_thread,		
									qlink);	

								//	Tell	the	scheduler	to	add		
	//	current	thread	to	the	list	of	blocked	threads.	

								sched_mark_blocked(&id_of_this_thread);	
								//	Unlock	spinlock.	
								release(&m−>splock);	
								//	Stop	executing	until	woken.	
								sched_swtch();	
								//	We	guaranteed	to	hold	the	mutex		

	//	when	we	are	here	
				}	
}

only one thread can modify the 
mutex's internal state at a time

this thread is waiting and 
shouldn’t be scheduled to run

allowing other threads to access 
the mutex's internal state

This call switches to another 
thread

This is because we can get here only if context−switched−TO, which itself can happen only if this thread is removed from the waiting queue, marked "unblocked", and set to be the owner (in mutex_release() 
below). However, we might have held the mutex in lines 39−42 (if we were context−switched out after the spinlock release(), followed by being run as a result of another thread’s release of the mutex). But if 

that happens, it just means that we are context−switched out an "extra" time before proceeding.



Mutex: spinlock + a queue

typedef	struct	thread	{	
				//	...	Entries	elided.	
				//	Tail	queue	entry.	
				STAILQ_ENTRY(thread_t)	qlink;	
}	thread_t;

struct	Mutex	{	
				//	Current	owner	
				//or	0	when	mutex	is	not	held.	
				thread_t	*owner;	

				//	List	of	threads	waiting	on	mutex	
				STAILQ(thread_t)	waiters;	

				//	A	lock	protecting		
		//the	internals	of	the	mutex.	

				Spinlock	splock;	
};

void	mutex_release(struct	Mutex	*m)	{	
				//	Acquire	the	spinlock	in	order	to	make	changes.	
				acquire(&m−>splock);	

				//	Assert	that	the	current	thread		
				//	actually	owns	the	mutex	
				assert(m−>owner	==	id_of_this_thread);	

				//	Check	if	anyone	is	waiting.	
				m−>owner	=	STAILQ_GET_HEAD(&m−>waiters);	

				//	If	so,	wake	them	up.	
				if	(m−>owner)	{	
								sched_wakeone(&m−>owner);	
								STAILQ_REMOVE_HEAD(&m−>waiters,	qlink);	
				}	

				//	Release	the	internal	spinlock	
				release(&m−>splock);	
}

only one thread can modify the 
mutex's internal state at a time

safety check to prevent a thread from 
releasing a mutex it doesn't own

get the first thread from the 
waiters queue

making it ready to run.

The thread is removed from the 
head of the waiters queue.

If there were no waiting threads, 
the m->owner would be NULL, 

effectively marking the mutex as 
unheld.

Another implementation is covered in the textbook (https://pages.cs.wisc.edu/~remzi/OSTEP/threads-locks.pdf)



What makes a good mutex implementation?

Mechanism

Mechanism Pros Cons Best Use Case

Spinlock + Queue

- Efficient for both short and long waits 
- Allows context switching 
- Fair (FIFO ordering) 
- Scalable to many threads

- More complex implementation 
- Slightly higher overhead for uncontended 
case

General-purpose locking 
in multi-threaded 

environments

Pure Spinlock - Very fast for short waits 
- Simple implementation

- Wastes CPU cycles for long waits 
- Starvation and contention

Very short-duration locks 
with low contention

Disabling Interrupts - Simple to implement 
- Guaranteed mutual exclusion

- Only works on single-processor systems 
- Can increase interrupt latency 
- Can't be used by user-level code

Low-level OS operations 
on single-processor 

systems

Peterson's Algorithm - Works without hardware support 
- Guaranteed fairness

- Limited to two threads 
- Busy-waiting (similar to spinlock) 
- Can be less efficient on modern hardware

Educational purposes, 
simple two-thread 

synchronization



Deadlock

T1:	
acquire(mutexA);	
acquire(mutexB);	

//	do	some	stuff	

release(mutexB);	
release(mutexA);

T2:	
acquire(mutexB);	
acquire(mutexA);	

//	do	some	stuff	

release(mutexA);	
release(mutexB);

Example 1



class	N	{	
				private:	
								Mutex	mutex_n;	
								Cond	cond_n;	
								int	navailable;	

				public:	
								N();	
								~N();	
								void*	alloc(int	nwanted);	
								void	free(void*);	
}

Deadlock

Example 2: Code see handout

M:	
acquire(&mutex_m);	
n.alloc(nwanted)	

acquire(&mutex_m);	

N:	

acquire(&mutex_n)	
navailable	<	nwanted	
release(&mutex_n)		

class	M	{	
				private:	
								Mutex	mutex_m;	
								//	instance	of	monitor	N	
								N	another_monitor;	

								//	Assumption:	no	other	objects	
//	in	the	system	hold	a	pointer	

								//	to	our	"another_monitor"	

				public:	
								M();	
								~M();	
								void	methodA();	
								void	methodB();	
};



Deadlock



Deadlock



Deadlock

Happens when all four conditions are present: 
(1) Mutual exclusion 
(2) Hold and wait 
(3) No pre-emption 
(4) Circular wait 



Preventing deadlock

Ignore It!

Detect & Recover

Avoid Algorithmically

Negate Any of the Conditions

Static/Dynamic Analysis

Works in development, not really viable for production 

There are ways but we don’t cover them in this class1

Check the following if you are curious:

1Section 6.5.3 of Modern Operating Systems (Tanenbaum)


2Engler, D. and K. Ashcraft. RacerX: effective, static detection of race conditions and deadlocks.

3Savage, S., M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: a dynamic data race detector for multithreaded programs.

Static: detect potential errors without running the code2 

Dynamic: detect (potential) error during/after execution3

Hold and wait 
not likely to work 

Mutual exclusion 
put a queue for 

accessing resources

No preemption 
not likely to work 

Circular dependency 
put partial order on locks 

(=> no cycles)

“admit defeat”



Other progress issues

Starvation Priority Inversion

Thread waiting indefinitely 
(if low priority and/or resource is contended)

T1: 
(highest priority)

T2:  
(middle priority)

T3: 
(lowest priority)

hold the lock
start preempt T3

waiting for lock
start

running

Why does T2 control the CPU?



Priority inversion - potential fixes
Solution 1

T1: 
(highest priority)

T2:  
(middle priority)

T3: 
(highest priority)

hold the lock
start

waiting for lock
finish T3

release the lock
acquire the lock

running
……

Solution 2

T1: 
(highest priority)

T2:  
(middle priority)

T3: 
(lowest priority)

hold the lock
start

waiting for lock
disable interrupt

finish T3
release the lock

acquire the lock
running

……

Solution 3
Don’t handle it.  

Design the code wisely so that only adjacent priority processes/threads share the lock



Next lecture: reading is 
required! 

(yes, we will quiz you about it at the beginning of the Thursday class)


