
CS202 (003): Operating Systems
Concurrency III

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last Time

mutex_init(mutex_t*	m)	
mutex_lock(mutex_t*	m)	
mutex_unlock(mutex_t*	m)

Mutex (mutual exclusion objects)

void	cond_init(Cond	*cond,	...);	
void	cond_wait(Cond	*cond,	Mutex	*mutex);	

void	cond_signal(Cond	*cond);	
void	cond_broadcast(Cond	*cond);

Conditional Variables

Monitor: Mutex + Conditional Variables

All method calls are protected by a mutex

Synchronization happens with condition variables whose
associated mutex is the mutex that protects the method calls

“Monitor” can be used to refer to either a programming convention or
a method in certain programming languages*

* https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

Please follow these conventions on Lab 3!

Mike Dahlin’s “Programming with Threads”

You are required to follow this document
 (although we don’t code in Java)

You will lose a lot of points if you don’t follow
(in labs and exams)

Do not program concurrency in other ways
unless you are a concurrency guru

Standards for Programming w/ Threads

Rule I: acquire/release at beginning/end of methods

Rule II: hold lock when doing condition variable operations

Rule III: a thread that is in wait() must be prepared to be restarted at any time, not just
when another thread calls "signal()"

Rule IV: don't call sleep()

Advice for concurrent programming

Top-level piece of advice: SAFETY FIRST

Locking at coarse grain is easiest to get right, so do that

Don’t worry about performance at first

MAKE SURE YOU PROGRAM NEVER DOES THE WRONG THING

Don’t view deadlock as a disaster

Advice for concurrent programming

Getting started
1. Identify unit of concurrency
2. Identify chunks of state
3. write down high-level main loop of each thread

Write down the synchronization constraints, and the type

Create a lock or CV for each constraint

Implement the methods, using the locks and CVs

1 CS 202, Fall 2024
2 Handout 5 (Class 6)
3
4 The previous handout demonstrated the use of mutexes and condition
5 variables. This handout demonstrates the use of monitors (which combine
6 mutexes and condition variables).
7
8 1. The bounded buffer as a monitor
9

10 // This is pseudocode that is inspired by C++.
11 // Don’t take it literally.
12
13 class MyBuffer {
14 public:
15 MyBuffer();
16 ~MyBuffer();
17 void Enqueue(Item);
18 Item = Dequeue();
19 private:
20 int count;
21 int in;
22 int out;
23 Item buffer[BUFFER_SIZE];
24 Mutex* mutex;
25 Cond* nonempty;
26 Cond* nonfull;
27 };
28
29 void
30 MyBuffer::MyBuffer()
31 {
32 in = out = count = 0;
33 mutex = new Mutex;
34 nonempty = new Cond;
35 nonfull = new Cond;
36 }
37
38 void
39 MyBuffer::Enqueue(Item item)
40 {
41 mutex.acquire();
42 while (count == BUFFER_SIZE)
43 cond_wait(&nonfull, &mutex);
44
45 buffer[in] = item;
46 in = (in + 1) % BUFFER_SIZE;
47 ++count;
48 cond_signal(&nonempty, &mutex);
49 mutex.release();
50 }
51
52 Item
53 MyBuffer::Dequeue()
54 {
55 mutex.acquire();
56 while (count == 0)
57 cond_wait(&nonempty, &mutex);
58
59 Item ret = buffer[out];
60 out = (out + 1) % BUFFER_SIZE;
61 −−count;
62 cond_signal(&nonfull, &mutex);
63 mutex.release();
64 return ret;
65 }
66

Sep 23, 24 8:59 Page 1/4handout05.txt
67
68 int main(int, char**)
69 {
70 MyBuffer buf;
71 int dummy;
72 tid1 = thread_create(producer, &buf);
73 tid2 = thread_create(consumer, &buf);
74
75 // never reach this point
76 thread_join(tid1);
77 thread_join(tid2);
78 return −1;
79 }
80
81 void producer(void* buf)
82 {
83 MyBuffer* sharedbuf = reinterpret_cast<MyBuffer*>(buf);
84 for (;;) {
85 /* next line produces an item and puts it in nextProduced */
86 Item nextProduced = means_of_production();
87 sharedbuf−>Enqueue(nextProduced);
88 }
89 }
90
91 void consumer(void* buf)
92 {
93 MyBuffer* sharedbuf = reinterpret_cast<MyBuffer*>(buf);
94 for (;;) {
95 Item nextConsumed = sharedbuf−>Dequeue();
96
97 /* next line abstractly consumes the item */
98 consume_item(nextConsumed);
99 }
100 }
101
102 Key point: *Threads* (the producer and consumer) are separate from
103 *shared object* (MyBuffer). The synchronization happens in the
104 shared object.
105

Sep 23, 24 8:59 Page 2/4handout05.txt

Printed by Michael Walfish

Monday September 23, 2024 1/2handout05.txt

106 2. This monitor is a model of a database with multiple readers and
107 writers. The high−level goal here is (a) to give a writer exclusive
108 access (a single active writer means there should be no other writers
109 and no readers) while (b) allowing multiple readers. Like the previous
110 example, this one is expressed in pseudocode.
111
112 // assume that these variables are initialized in a constructor
113 state variables:
114 AR = 0; // # active readers
115 AW = 0; // # active writers
116 WR = 0; // # waiting readers
117 WW = 0; // # waiting writers
118
119 Condition okToRead = NIL;
120 Condition okToWrite = NIL;
121 Mutex mutex = FREE;
122
123 Database::read() {
124 startRead(); // first, check self into the system
125 Access Data
126 doneRead(); // check self out of system
127 }
128
129 Database::startRead() {
130 acquire(&mutex);
131 while((AW + WW) > 0){
132 WR++;
133 wait(&okToRead, &mutex);
134 WR−−;
135 }
136 AR++;
137 release(&mutex);
138 }
139
140 Database::doneRead() {
141 acquire(&mutex);
142 AR−−;
143 if (AR == 0 && WW > 0) { // if no other readers still
144 signal(&okToWrite, &mutex); // active, wake up writer
145 }
146 release(&mutex);
147 }
148
149 Database::write(){ // symmetrical
150 startWrite(); // check in
151 Access Data
152 doneWrite(); // check out
153 }
154
155 Database::startWrite() {
156 acquire(&mutex);
157 while ((AW + AR) > 0) { // check if safe to write.
158 // if any readers or writers, wait
159 WW++;
160 wait(&okToWrite, &mutex);
161 WW−−;
162 }
163 AW++;
164 release(&mutex);
165 }
166
167 Database::doneWrite() {
168 acquire(&mutex);
169 AW−−;
170 if (WW > 0) {
171 signal(&okToWrite, &mutex); // give priority to writers
172 } else if (WR > 0) {
173 broadcast(&okToRead, &mutex);
174 }
175 release(&mutex);
176 }
177
178 NOTE: what is the starvation problem here?

Sep 23, 24 8:59 Page 3/4handout05.txt
179
180 3. Shared locks
181
182 struct sharedlock {
183 int i;
184 Mutex mutex;
185 Cond c;
186 };
187
188 void AcquireExclusive (sharedlock *sl) {
189 acquire(&sl−>mutex);
190 while (sl−>i) {
191 wait (&sl−>c, &sl−>mutex);
192 }
193 sl−>i = −1;
194 release(&sl−>mutex);
195 }
196
197 void AcquireShared (sharedlock *sl) {
198 acquire(&sl−>mutex);
199 while (sl−>i < 0) {
200 wait (&sl−>c, &sl−>mutex);
201 }
202 sl−>i++;
203 release(&sl−>mutex);
204 }
205
206 void ReleaseShared (sharedlock *sl) {
207 acquire(&sl−>mutex);
208 if (!−−sl−>i)
209 signal (&sl−>c, &sl−>mutex);
210 release(&sl−>mutex);
211 }
212
213 void ReleaseExclusive (sharedlock *sl) {
214 acquire(&sl−>mutex);
215 sl−>i = 0;
216 broadcast (&sl−>c, &sl−>mutex);
217 release(&sl−>mutex);
218 }
219
220 QUESTIONS:
221 A. There is a starvation problem here. What is it? (Readers can keep
222 writers out if there is a steady stream of readers.)
223 B. How could you use these shared locks to write a cleaner version
224 of the code in the prior item? (Though note that the starvation
225 properties would be different.)

Sep 23, 24 8:59 Page 4/4handout05.txt

Printed by Michael Walfish

Monday September 23, 2024 2/2handout05.txt

- workers interact with a database
- readers never modify
- writers read an modify
- allow:

- many readers at once
OR

- only one writer (no reader)

Unit of concurrency?

Shared chunks of state?

What does main function looks like?

Synchronization constraints and objects?

Implementation of mutex

Peterson's algorithm

Disable interrupts

Spinlocks

Peterson’s Algorithm

- expensive (busy waiting)
- requires number of threads to be fixed statically

- assumes sequential consistency

volatile	bool	flag[2]	=	{false,	false};	
volatile	int	turn;

P0:						flag[0]	=	true;	
P0_gate:	turn	=	1;	
									while	(flag[1]	&&	turn	==	1)	
									{	
													//	busy	wait	
									}	
									//	critical	section	
									...	
								//	end	of	critical	section	
									flag[0]	=	false;	

P1:						flag[1]	=	true;	
P1_gate:	turn	=	0;	
									while	(flag[0]	&&	turn	==	0)	
									{	
													//	busy	wait	
									}	
								//	critical	section	
									...	
									//	end	of	critical	section	
									flag[1]	=	false;	

Disable Interrupts

- Works only on a single CPU
- Cannot expose to user processes

Spinlock
//	Abstract	Lock	Interface	
class	Lock	{	
				void	acquire();		//	Wait	until	lock	is	available,	then	take	it	
				void	release();		//	Release	the	lock	
}	

//	Spinlock	Implementation	
class	Spinlock	implements	Lock	{	
				private	int	flag	=	0;		//	0	=	unlocked,	1	=	locked	

				void	acquire()	{	
								…	
				}	

				void	release()	{	
								…	
				}	
}

Spinlock implementation I

struct	Spinlock	{	
				int	locked;	
}	

void	acquire(Spinlock	*lock)	{	
				while	(1)	{	
								if	(lock−>locked	==	0)	{	//	A	
												lock−>locked	=	1;	//	B	
												break;	
								}	
				}	
}	

void	release	(Spinlock	*lock)	{	
				lock−>locked	=	0;	
}

What is the problem?

Thread	1	A	
Thread	2	A	
Thread	2	B	
Thread	1	B

Violates mutual exclusion!

Spinlock implementation II
/*	pseudocode	*/	
int	xchg_val(addr,	value)	{	
				%rax	=	value;	
				xchg	(*addr),	%rax	
}	

void	acquire	(Spinlock	*lock)	{	
				pushcli();	/*	what	does	this	do?	*/	
				while	(1)	{	
				if	(xchg_val(&lock−>locked,	1)	==	0)	
								break;	
				}	
}	

void	release(Spinlock	*lock){	
				xchg_val(&lock−>locked,	0);	
				popcli();	/*	what	does	this	do?	*/	
}

(i) freeze all CPUs’ memory activity for address addr

(ii) temp	<−	*addr

(iii) *addr	<−	%rax	

(iv) %rax	<−	temp	

(v) un−freeze memory activity

Spinlock implementation II
/*	pseudocode	*/	
int	xchg_val(addr,	value)	{	
				%rax	=	value;	
				xchg	(*addr),	%rax	
}	

/*	optimization	in	acquire;	
call	xchg_val()	less	frequently	*/	
void	acquire(Spinlock*	lock)	{	
				pushcli();	
				while	(xchg_val(&lock−>locked,	1)	==	1)	{	
								while	(lock−>locked)	;	
				}	
}	

void	release(Spinlock	*lock){	
				xchg_val(&lock−>locked,	0);	
				popcli();	
}

Busy waits!

Starvation!

Quiz Time!
Please submit both the quiz booklet and the

answer sheet (with your name on both of them!)

