
CS202 (003): Operating Systems
Concurrency
Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last time…

Threading

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/4_Threads.html

Lightweight units of execution
within a process

That means, you can do
concurrent execution within a

process using thread

Process address space with threadsProcess address space

https://jhuopsys.github.io/spring2024/lectures/lecture04.pdf

TCB (thread control block)

a data structure inside the kernel that
contains thread-specific information
needed for managing the thread.

Interface to Threads

How do we create threads?

tid thread_create(void (*fn) (void *), void *arg);	

void thread_exit();	

void thread_join(tid thr);

And a lot more synchronization primitives

Concurrency

Simultaneous execution of multiple tasks

Broader concept than just threading

multiple CPUs and
common memory

Multiple computers
connected via a network

Allows CPU to work on
other tasks while waiting

for I/O to complete

the OS was the first concurrent program, and many
techniques were created for use within the OS

Concurrency is HARD

Difficult to reason about all possible interleaving

Race conditions, deadlocks, livelocks,
starvations, …

Will talk more in the following lectures.

Understanding Interleavings
int x;	
int main(int argc, char** argv) {	
 tid tid1 = thread_create(f, NULL);	
 tid tid2 = thread_create(g, NULL);	

 thread_join(tid1);	
 thread_join(tid2);	

 printf("%d\n", x);	
}	

void f() {	
 x = 1;	
 thread_exit();	
}	

void g() {	
 x = 2;	
 thread_exit();	
}

Understanding Interleavings
int x;	
int y = 12;	
int main(int argc, char** argv) {	
 tid tid1 = thread_create(f, NULL);	
 tid tid2 = thread_create(g, NULL);	

 thread_join(tid1);	
 thread_join(tid2);	

 printf("%d\n", x);	
}	

void f() {	
 x = y + 1;	
 thread_exit();	
}	

void g() {	
 y = y * 2;	
 thread_exit();	
}

Understanding Interleavings
int x = 0;	
int main(int argc, char** argv) {	
 tid tid1 = thread_create(f, NULL);	
 tid tid2 = thread_create(g, NULL);	

 thread_join(tid1);	
 thread_join(tid2);	

 printf("%d\n", x);	
}	

void f() {	
 x = x + 1;	
 thread_exit();	
}	

void g() {	
 x = x + 2;	
 thread_exit();	
}

Handout 1(c)

 f()	
1 movq 0x5000, %rbx # load from address 0x5000 into register	
2 addq $1, %rbx # add 1 to the register's value	
3 movq %rbx, 0x5000 # store back

 g()	
4 movq 0x5000, %rbx # load from address 0x5000 into register	
5 addq $2, %rbx # add 2 to the register's value	
6 movq %rbx, 0x5000 # store back

Understanding Interleavings

struct List_elem {	
 int data;	
 struct List_elem* next;	
};	

List_elem* head = 0;	

insert(int data) {	
 List_elem* l = new List_elem;	
 l−>data = data;	
 l−>next = head;	
 head = l;	
}

What happens if two threads execute insert() at
once and we get the following interleaving?

thread 1: l−>next = head	
thread 2: l−>next = head	
thread 2: head = l;	
thread 1: head = l;

* this is pseudocode

The list is broken!

Understanding Interleavings
void producer (void *ignored) {	
 for (;;) {	
 /* next line produces an item and puts it in nextProduced */	
 nextProduced = means_of_production();	
 while (count == BUFFER_SIZE)	
 ; // do nothing	
 buffer [in] = nextProduced;	
 in = (in + 1) % BUFFER_SIZE;	
 count++;	
 }}	

void consumer (void *ignored) {	
 for (;;) {	
 while (count == 0)	
 ; // do nothing	
 nextConsumed = buffer[out];	
 out = (out + 1) % BUFFER_SIZE;	
 count−−;	
 /* next line abstractly consumes the item */	
 consume_item(nextConsumed);	
}}

What happens if we get the
following interleaving?

assuming count++ compiles to:	
reg1 <− count # load 	
reg1 <− reg1 + 1 # increment register 	
count <− reg1 # store 	

assuming count-- compiles to:	
reg2 <− count # load	
reg2 <− reg2 − 1 # decrement register 	
count <− reg2 # store

reg1 <- count	
reg1 <- reg1 + 1	
reg2 <- count	
reg2 <- reg2 - 1	
count <- reg1 	
count <- reg2* this is pseudocode

The count is incorrect!

We call these situation a race condition

Or more specifically, a data race

It arises if multiple threads of execution enter the critical section at roughly
the same time; both attempt to update the shared data structure, leading to

a surprising (and perhaps undesirable) outcome.

Hardware might make things worse
int flag1 = 0, flag2 = 0;	

int main () {	
 tid id = thread_create (p1, NULL);	
 p2 (); thread_join (id);	
}	

void p1 (void *ignored) {	
 flag1 = 1;	
 if (!flag2) {	
 critical_section_1 ();	
 }	
}	

void p2 (void *ignored) {	
 flag2 = 1;	
 if (!flag1) {	
 critical_section_2 ();	
 }	
}

Can both "critical sections" run?

* this is pseudocode

Maybe, if the hardware works like the following:

https://sadve.cs.illinois.edu/Publications/computer96.pdf

Hardware might make things worse

int data = 0, head = 0;	

void p1 () {	
 data = 2000;	
 head = 1;	
}	

int p2 () {	
 while (!head) {}	
 use(data);	
}

Can use() be called with value 0,
if p2 and p1 run concurrently?

* this is pseudocode

Maybe, if the hardware works like the following:

https://sadve.cs.illinois.edu/Publications/computer96.pdf

Hardware might make things worse

int a = 0, b = 0;	

void p1 (void *ignored) { a = 1; }	

void p2 (void *ignored) {	
 if (a == 1) b = 1;	
}	

void p3 (void *ignored) {	
 if (b == 1) use (a);	
}

Can use() be called with value 0?

* this is pseudocode

Maybe, if the hardware works like the following:

Certain hardware allows P2 to return the value of
P1’s write before the write is visible to P3

Reasoning about Concurrency is Hard!

https://sadve.cs.illinois.edu/Publications/computer96.pdf

Don’t worry about hardware-related issues, for now

(Unless explicitly relax it) We assume sequential consistency in this class

(On each individual processors)
Writes to each memory location happen in the order that they are issued

Lab 2 is Released Today!

Quiz Time!
Please submit both the quiz booklet and the

answer sheet (with your name on both of them!)

