
CS202 (003): Operating Systems
Concurrency
Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last time…

Threading

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/4_Threads.html

Lightweight units of execution
within a process

That means, you can do
concurrent execution within a

process using thread

Process address space with threadsProcess address space

https://jhuopsys.github.io/spring2024/lectures/lecture04.pdf

TCB (thread control block)

a data structure inside the kernel that
contains thread-specific information
needed for managing the thread.

Interface to Threads

How do we create threads?

tid	thread_create(void	(*fn)	(void	*),	void	*arg);	

void	thread_exit();	

void	thread_join(tid	thr);

And a lot more synchronization primitives

Concurrency

Simultaneous execution of multiple tasks

Broader concept than just threading

multiple CPUs and
common memory

Multiple computers
connected via a network

Allows CPU to work on
other tasks while waiting

for I/O to complete

the OS was the first concurrent program, and many
techniques were created for use within the OS

Concurrency is HARD

Difficult to reason about all possible interleaving

Race conditions, deadlocks, livelocks,
starvations, …

Will talk more in the following lectures.

Understanding Interleavings
int	x;	
int	main(int	argc,	char**	argv)	{	
				tid	tid1	=	thread_create(f,	NULL);	
				tid	tid2	=	thread_create(g,	NULL);	

				thread_join(tid1);	
				thread_join(tid2);	

				printf("%d\n",	x);	
}	

void	f()	{	
				x	=	1;	
				thread_exit();	
}	

void	g()	{	
				x	=	2;	
				thread_exit();	
}

Understanding Interleavings
int	x;	
int	y	=	12;	
int	main(int	argc,	char**	argv)	{	
				tid	tid1	=	thread_create(f,	NULL);	
				tid	tid2	=	thread_create(g,	NULL);	

				thread_join(tid1);	
				thread_join(tid2);	

				printf("%d\n",	x);	
}	

void	f()	{	
				x	=	y	+	1;	
				thread_exit();	
}	

void	g()	{	
				y	=	y	*	2;	
				thread_exit();	
}

Understanding Interleavings
int	x	=	0;	
int	main(int	argc,	char**	argv)	{	
				tid	tid1	=	thread_create(f,	NULL);	
				tid	tid2	=	thread_create(g,	NULL);	

				thread_join(tid1);	
				thread_join(tid2);	

				printf("%d\n",	x);	
}	

void	f()	{	
				x	=	x	+	1;	
				thread_exit();	
}	

void	g()	{	
				x	=	x	+	2;	
				thread_exit();	
}

Handout 1(c)

		f()	
1	movq	0x5000,	%rbx				#	load	from	address	0x5000	into	register	
2	addq	$1,	%rbx								#	add	1	to	the	register's	value	
3	movq	%rbx,	0x5000				#	store	back

		g()	
4	movq	0x5000,	%rbx				#	load	from	address	0x5000	into	register	
5	addq	$2,	%rbx								#	add	2	to	the	register's	value	
6	movq	%rbx,	0x5000				#	store	back

Understanding Interleavings

struct	List_elem	{	
				int	data;	
				struct	List_elem*	next;	
};	

List_elem*	head	=	0;	

insert(int	data)	{	
				List_elem*	l	=	new	List_elem;	
				l−>data	=	data;	
				l−>next	=	head;	
				head	=	l;	
}

What happens if two threads execute insert() at
once and we get the following interleaving?

thread	1:	l−>next	=	head	
thread	2:	l−>next	=	head	
thread	2:	head	=	l;	
thread	1:	head	=	l;

* this is pseudocode

The list is broken!

Understanding Interleavings
void	producer	(void	*ignored)	{	
				for	(;;)	{	
								/*	next	line	produces	an	item	and	puts	it	in	nextProduced	*/	
								nextProduced	=	means_of_production();	
								while	(count	==	BUFFER_SIZE)	
												;	//	do	nothing	
								buffer	[in]	=	nextProduced;	
				in	=	(in	+	1)	%	BUFFER_SIZE;	
				count++;	
				}}	

void	consumer	(void	*ignored)	{	
				for	(;;)	{	
								while	(count	==	0)	
												;	//	do	nothing	
								nextConsumed	=	buffer[out];	
								out	=	(out	+	1)	%	BUFFER_SIZE;	
								count−−;	
								/*	next	line	abstractly	consumes	the	item	*/	
								consume_item(nextConsumed);	
}}

What happens if we get the
following interleaving?

assuming	count++	compiles	to:	
reg1	<−	count	#	load		
reg1	<−	reg1	+	1	#	increment	register		
count	<−	reg1	#	store		

assuming	count--	compiles	to:	
reg2	<−	count	#	load	
reg2	<−	reg2	−	1	#	decrement	register		
count	<−	reg2	#	store

reg1	<-	count	
reg1	<-	reg1	+	1	
reg2	<-	count	
reg2	<-	reg2	-	1	
count	<-	reg1		
count	<-	reg2* this is pseudocode

The count is incorrect!

We call these situation a race condition

Or more specifically, a data race

It arises if multiple threads of execution enter the critical section at roughly
the same time; both attempt to update the shared data structure, leading to

a surprising (and perhaps undesirable) outcome.

Hardware might make things worse
int	flag1	=	0,	flag2	=	0;	

int	main	()	{	
				tid	id	=	thread_create	(p1,	NULL);	
				p2	();	thread_join	(id);	
}	

void	p1	(void	*ignored)	{	
				flag1	=	1;	
				if	(!flag2)	{	
								critical_section_1	();	
				}	
}	

void	p2	(void	*ignored)	{	
				flag2	=	1;	
				if	(!flag1)	{	
								critical_section_2	();	
				}	
}

Can both "critical sections" run?

* this is pseudocode

Maybe, if the hardware works like the following:

https://sadve.cs.illinois.edu/Publications/computer96.pdf

Hardware might make things worse

int	data	=	0,	head	=	0;	

void	p1	()	{	
				data	=	2000;	
				head	=	1;	
}	

int	p2	()	{	
				while	(!head)	{}	
				use(data);	
}

Can use() be called with value 0,
if p2 and p1 run concurrently?

* this is pseudocode

Maybe, if the hardware works like the following:

https://sadve.cs.illinois.edu/Publications/computer96.pdf

Hardware might make things worse

int	a	=	0,	b	=	0;	

void	p1	(void	*ignored)	{	a	=	1;	}	

void	p2	(void	*ignored)	{	
				if	(a	==	1)	b	=	1;	
}	

void	p3	(void	*ignored)	{	
				if	(b	==	1)	use	(a);	
}

Can use() be called with value 0?

* this is pseudocode

Maybe, if the hardware works like the following:

Certain hardware allows P2 to return the value of
P1’s write before the write is visible to P3

Reasoning about Concurrency is Hard!

https://sadve.cs.illinois.edu/Publications/computer96.pdf

Don’t worry about hardware-related issues, for now

(Unless explicitly relax it) We assume sequential consistency in this class

(On each individual processors)
Writes to each memory location happen in the order that they are issued

Lab 2 is Released Today!

Quiz Time!
Please submit both the quiz booklet and the

answer sheet (with your name on both of them!)

