Printed by Michael Walfish

Sep 16, 24 6:08

handout03.txt Page 1/4

Sep 16, 24 6:08

handout03.txt Page 2/4

CS 202, Fall 2024
Handout 3 (Class 4)

1.
and thread tid2 executes g().

Example to illustrate interleavings: say that thread tidl executes f ()
(Here, we are using the term "thread"

abstractly. This example applies to any of the approaches that fall
under the word "thread".)

a. [this is pseudocode]
int x;
int main(int argc, char** argv) {

tid tidl = thread_create(f, NULL);
tid tid2 = thread_create(g, NULL);

thread_join(tidl);
thread_join (tid2);

printf ("$d\n", x);
}

void £()
{
x =1;
thread_exit ();
}

void g()

{
X = 2;
thread_exit ();

What are possible values of x after tidl has executed f() and tid2 has
executed g()? In other words, what are possible outputs of the
program above?

b. Same question as above, but f() and g() are now defined as
follows:

int y = 12;
+
*

y + 1;
y * 2; }

Q
=
{[]

What are the possible values of x?

c. Same question as above, but f() and g() are now defined as
follows:

int x = 0;

f({ x=x+1; }

g() { x=x+2; 1}

What are the possible values of x?

64
65
66
67
68
69
70
71
72
73
74
75
7
7
78
79
80
81
82
83
84
85
86
87

Linked list example

struct List_elem {

int data;

struct List_elem* next;
}i

List_elem* head = 0;

insert (int data) {
List_elem* 1 = new List_elem;
l1->data = data;
1->next = head;
head = 1;
}

What happens if two threads execute insert () at once and we get the
following interleaving?

thread 1: l->next = head
thread 2: l->next = head
thread 2: head = 1;
thread 1: head = 1;

Monday September 16, 2024

handout03.txt

1/2

Printed by Michael Walfish

Sep 16, 24 6:08

handout03.txt Page 3/4

Sep 16, 24 6:08

handout03.txt Page 4/4

88
89
90
91
92
93
94
95
96
97
98
99

Producer/consumer example:

/*

"buffer" stores BUFFER_SIZE items

"count" is number of used slots. a variable that lives in memory
"in" is next empty buffer slot to fill (if any)

"out" is oldest filled slot to consume (if any)

*

/

void producer (void *ignored) {
for (;i) {
/* next line produces an item and puts it in nextProduced */
nextProduced = means_of_production();

while (count == BUFFER_SIZE)
; // do nothing

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

count++;

}

void consumer (void *ignored) {
for (;;) {
while (count == 0)
i // do nothing
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count——;
/* next line abstractly consumes the item */
consume_item (nextConsumed) ;

}

/*
what count++ probably compiles to:
regl <-- count # load
regl <-- regl + 1 # increment register
count <-- regl # store
what count-- could compile to:
reg2 <-- count # load
reg2 <-- reg2 -1 # decrement register
count <-- reg2 # store
*
/

What happens if we get the following interleaving?

regl <-- count
regl <-— regl + 1
reg2 <-- count
reg2 <-- reg2 -1
count <-- regl

count <-- reg2

Some other examples. What is the point of these?

[From S.V. Adve and K. Gharachorloo, IEEE Computer, December 1996,
66-76. http://rsim.cs.uiuc.edu/~sadve/Publications/computer96.pdf]

Can both "critical sections" run?
int flagl = 0, flag2 = 0;
int main () {
tid id = thread_create (pl, NULL);
p2 (); thread_join (id);
}

void pl (void *ignored) {

flagl = 1;
if (!flag2) {
critical_section_1 ();

}
}

void p2 (void *ignored) {

flag2 = 1;
if (!flagl) {
critical_section_2 ();

}
}

Can use () be called with value 0, if p2 and pl run concurrently?
int data = 0, ready = 0;

void pl () {
data = 2000;
ready = 1;

}

int p2 () {
while (!ready) {}
use (data) ;

}
Can use () be called with value 0?
int a = 0, b = 0;

void pl (void *ignored) { a = 1; }
void p2 (void *ignored) {

if (a 1)
b =1;

}

void p3 (void *ignored) {
if (b ==
use (a);

Monday September 16, 2024

handout03.txt

22

