Printed by Michael Walfish

Jan 31, 24 8:58 handout02.txt Page 1/4 Jan 31, 24 8:58 handout02.txt Page 2/4
1 CS 202, Spring 2024 s6 3. Another syscall example: pipe ()

2 Handout 2 (Class 4) 57

3 58 The pipe() syscall is used by the shell to implement pipelines, such as
4 The handout is meant to: 59 $ 1s | sort head -4

5 60 We will see this in a moment; for now, here is an example use of

6 ——illustrate how the shell itself uses syscalls 61 pipes.

7 62

8 ——-communicate the power of the fork()/exec() separation 63 // C fragment with simple use of pipes

9 64

10 —-—give an example of how small, modular pieces (file descriptors, 65 int fdarrayl[2];

11 pipes, fork(), exec()) can be combined to achieve complex behavior 66 char buf[512];

12 far beyond what any single application designer could or would have 67 int nj;

13 specified at design time. (We will not cover pipes in lecture today.) 68

14 69 pipe (fdarray) ;

15 1. Pseudocode for a very simple shell 70 write (fdarray[1l], "hello", 5);

16 71 n = read(fdarray([0], buf, sizeof (buf));

17 while (1) { 72 // buf[] now contains ’'h’, ’e’, ’'1’, '1', o

18 write(1l, "s$ ", 2); 73

19 readcommand (command, args); // parse input 74 4. File descriptors are inherited across fork

20 if ((pid = fork()) == 0) // child? 75

21 execve (command, args, 0); 76 // C fragment showing how two processes can communicate over a pipe
22 else if (pid > 0) // parent? 77

23 wait (0); //wait for child 78 int fdarrayl[2];

24 else 79 char buf[512];

25 perror ("failed to fork"); 80 int n, pid;

26 } 81

27 82 pipe (fdarray) ;

28 2. Now add two features to this simple shell: output redirection and 83 pid = fork();

33

backgrounding

By output redirection,
$ 1s > list.txt
By backgrounding, we mean,
$ myprog &
$

we mean, for example:

for example:

while (1) {
write(l, "$ ", 2);
readcommand (command, args)
if ((pid = fork()) == 0) {
if (output_redirected)
close(1l);
open (redirect_file, O_CREAT | O_TRUNC | O_WRONLY, 0666);

; // parse input
// child?
{

}
// when command runs, fd 1 will refer to the redirected file
execve (command, args, 0);
} else if (pid > 0) { // parent?
if (foreground_process) {
wait (0); //wait for child
}
} else {
perror ("failed to fork");

}

84
85
86
87
88
89

if (pid > 0) {

write (fdarray([1l],
} else {

n = read(fdarray[0],
}

"hello", 5);

buf, sizeof (buf));

Wednesday January 31, 2024

handout02.ixt

1/3

Printed by Michael Walfish

Jan 31, 24 8:58

handout02.txt Page 3/4

Jan 31, 24 8:58

handout02.txt

Page 4/4

920
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
11
112
113
114
115
116
17
118
119

Putting it all together: implementing shell pipelines using
fork (), exec(), and pipe() .

// Pseudocode for a Unix shell that can run processes in the
// background, redirect the output of commands, and implement
// two element pipelines, such as "ls | sort"

void main_loop () {

while (1) {
write(1l, "$ ", 2);
readcommand (command, args); // parse input
if ((pid = fork()) == 0) { // child?
if (pipeline_requested) {
handle_pipeline (left_command, right_command)
} else {
if (output_redirected) {
close(1l);
open (redirect_file, O_CREAT O_TRUNC | O_WRONLY, 0666);
}

exec (command, args, 0);

}
} else if (pid > 0) { // parent?
if (foreground_process) {
wait (0); // wait for child
}
} else {
perror ("failed to fork");
}

}
void handle_pipeline (left_command, right_command) {
int fdarrayl[2];

if (pipe (fdarray) < 0) panic ("error");
if ((pid = fork ()) == 0) { // child (left end of pipe)

dup2 (fdarray([l], 1); // make fd 1 the same as fdarray[1l],
// which is the write end of the
// pipe. implies close (1).
close (fdarrayl[0]);
close (fdarrayl[l]);
parse (commandl, argsl, left_command);
exec (commandl, argsl, 0);
} else if (pid > 0) { // parent (right end of pipe)
dup2 (fdarray[0], 0); // make fd 0 the same as fdarray([0],
// which is the read end of the pipe.
// implies close (0).
close (fdarrayl[0]);
close (fdarrayl[l]);
parse (command2, args2, right_command) ;
exec (command2, args2, 0);

} else {
printf ("Unable to fork\n");
}

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

6. Commentary

Why is this interesting? Because pipelines and output redirection
are accomplished by manipulating the child’s environment, not by
asking a program author to implement a complex set of behaviors.
That is, the *identical code* for "1ls" can result in printing to the
screen ("1ls -1"), writing to a file ("1ls -1 > output.txt"), or
getting 1ls’s output formatted by a sorting program ("ls -1 \ sort") .

This concept is powerful indeed. Consider what would be needed if it
weren’t for redirection: the author of 1ls would have had to
anticipate every possible output mode and would have had to build in
an interface by which the user could specify exactly how the output
is treated.

What makes it work is that the author of 1ls expressed their
code in terms of a file descriptor:

write(l, "some output", byte_count);
This author does not, and cannot, know what the file descriptor will
represent at runtime. Meanwhile, the shell has the opportunity, *in
between fork() and exec()*, to arrange to have that file descriptor
represent a pipe, a file to write to, the console, etc.

Wednesday January 31, 2024

handout02.ixt

2/3

