
1 CS 202, Spring 2024
2 Handout 2 (Class 4)
3
4 The handout is meant to:
5
6     −−illustrate how the shell itself uses syscalls
7
8     −−communicate the power of the fork()/exec() separation
9

10     −−give an example of how small, modular pieces (file descriptors,
11     pipes, fork(), exec()) can be combined to achieve complex behavior
12     far beyond what any single application designer could or would have
13     specified at design time. (We will not cover pipes in lecture today.)
14
15 1. Pseudocode for a very simple shell 
16
17  while (1) {
18 write(1, "$ ", 2);
19 readcommand(command, args); // parse input
20 if ((pid = fork()) == 0) // child?
21 execve(command, args, 0);
22 else if (pid > 0) // parent?
23 wait(0); //wait for child
24 else
25 perror("failed to fork");
26 }
27
28 2. Now add two features to this simple shell: output redirection and
29    backgrounding 
30
31     By output redirection, we mean, for example:
32 $ ls > list.txt
33     By backgrounding, we mean, for example:
34 $ myprog &
35 $
36
37 while (1) {
38     write(1, "$ ", 2);
39     readcommand(command, args); // parse input
40     if ((pid = fork()) == 0) { // child?
41 if (output_redirected) {
42     close(1);
43     open(redirect_file, O_CREAT | O_TRUNC | O_WRONLY, 0666);
44 }
45 // when command runs, fd 1 will refer to the redirected file
46 execve(command, args, 0);
47     } else if (pid > 0) { // parent?
48 if (foreground_process) {
49     wait(0);  //wait for child
50 }
51     } else {
52     perror("failed to fork");
53     }
54 }
55

Jan 31, 24 8:58 Page 1/4handout02.txt
56 3. Another syscall example: pipe()
57
58     The pipe() syscall is used by the shell to implement pipelines, such as 
59 $ ls | sort | head −4
60      We will see this in a moment; for now, here is an example use of
61      pipes.
62
63 // C fragment with simple use of pipes
64
65         int fdarray[2];
66         char buf[512];
67         int n;
68
69         pipe(fdarray);
70         write(fdarray[1], "hello", 5);
71         n = read(fdarray[0], buf, sizeof(buf));
72         // buf[] now contains ’h’, ’e’, ’l’, ’l’, ’o’
73
74 4. File descriptors are inherited across fork
75
76 // C fragment showing how two processes can communicate over a pipe
77
78         int fdarray[2];
79         char buf[512];
80         int n, pid;
81
82         pipe(fdarray);
83         pid = fork();
84         if(pid > 0){
85           write(fdarray[1], "hello", 5);
86         } else {
87           n = read(fdarray[0], buf, sizeof(buf));
88         }
89

Jan 31, 24 8:58 Page 2/4handout02.txt

Printed by Michael Walfish

Wednesday January 31, 2024 1/3handout02.txt



90 5. Putting it all together: implementing shell pipelines using
91    fork(), exec(), and pipe(). 
92
93
94     // Pseudocode for a Unix shell that can run processes in the
95     // background, redirect the output of commands, and implement
96     // two element pipelines, such as "ls | sort"
97
98      void main_loop() {
99
100 while (1) {
101     write(1, "$ ", 2);
102     readcommand(command, args); // parse input
103     if ((pid = fork()) == 0) { // child?
104 if (pipeline_requested) {
105     handle_pipeline(left_command, right_command)
106 } else {
107     if (output_redirected) {
108 close(1);
109 open(redirect_file, O_CREAT | O_TRUNC | O_WRONLY, 0666);
110     }
111     exec(command, args, 0);
112 }
113     } else if (pid > 0) { // parent?
114 if (foreground_process) {
115     wait(0);  // wait for child
116 }
117     } else {
118     perror("failed to fork");
119     }
120 }
121     }
122
123     void handle_pipeline(left_command, right_command) {
124
125 int fdarray[2];
126
127         if (pipe(fdarray) < 0) panic ("error");
128         if ((pid = fork ()) == 0) {  // child (left end of pipe)
129
130            dup2 (fdarray[1], 1);  // make fd 1 the same as fdarray[1],
131                           // which is  the write end of the
132                           // pipe. implies close (1).
133            close (fdarray[0]);       
134            close (fdarray[1]);       
135    parse(command1, args1, left_command);
136            exec (command1, args1, 0);
137
138         } else if (pid > 0) {        // parent (right end of pipe)
139
140            dup2 (fdarray[0], 0);  // make fd 0 the same as fdarray[0],
141                           // which is the read end of the pipe.
142                           // implies close (0).
143            close (fdarray[0]);
144            close (fdarray[1]);       
145    parse(command2, args2, right_command);
146            exec (command2, args2, 0);
147
148         } else {
149            printf ("Unable to fork\n");
150         }
151     }
152

Jan 31, 24 8:58 Page 3/4handout02.txt
152   
153 6. Commentary
154
155     Why is this interesting? Because pipelines and output redirection
156     are accomplished by manipulating the child’s environment, not by
157     asking a program author to implement a complex set of behaviors.
158     That is, the *identical code* for "ls" can result in printing to the
159     screen ("ls −l"), writing to a file ("ls −l > output.txt"), or
160     getting ls’s output formatted by a sorting program ("ls −l | sort").
161     
162     This concept is powerful indeed. Consider what would be needed if it
163     weren’t for redirection: the author of ls would have had to
164     anticipate every possible output mode and would have had to build in
165     an interface by which the user could specify exactly how the output
166     is treated.
167
168     What makes it work is that the author of ls expressed their
169     code in terms of a file descriptor: 
170 write(1, "some output", byte_count);
171     This author does not, and cannot, know what the file descriptor will
172     represent at runtime. Meanwhile, the shell has the opportunity, *in
173     between fork() and exec()*, to arrange to have that file descriptor
174     represent a pipe, a file to write to, the console, etc.

Jan 31, 24 8:58 Page 4/4handout02.txt

Printed by Michael Walfish

Wednesday January 31, 2024 2/3handout02.txt


