
HW2 Solutions
1.1.

1.2.

2.1.

node_t *

find_insert_pos(node_t *head, node_t *node)

{

 if (head == NULL) return NULL;

 node_t *ret = NULL;

 // 2.1 your code here

 while (head != NULL) {

 if (head->id >= node->id) break;

 else {

 ret = head;

 head = head->next;

 }

 }

 return ret;

}

node_t *

insert(node_t *head, node_t *node)

{

 if (head == NULL) return node;

 // find the proper position to insert

 // this node pair.

 node_t *pos = find_insert_pos(head, node);

 // 2.2 your code here

 if (pos == NULL) { // insert before head

 node->next = head;

 head = node;

 } else { // insert after pos

 node->next = pos->next;

 pos->next = node;

 }

 return head;

}

2.1.
i. echo echo hello $world Output: echo hello Explanation: The command is the first echo , and $world is a
variable whose name is 'world'. Since we have not set the value for $world yet, $world will be expanded to an
empty string.

ii. echo 'echo hello $world' Output: echo hello $world Explanation: Within single quotes, $world is not
treated as a variable but rather as part of the string.

iii. echo "echo hello $world" Output: echo hello Explanation: The command is the first echo . Double
quotes will expand the variables inside, and we have not set $world yet

iv. echo `echo hello $world` Output: hello Explanation: The symbol ` will evaluate the command inside,
and the output of echo hello $world is "hello". Then the command becomes: echo hello .

v. echo (echo hello $world) Output: syntax error Explanation: Cannot use subshell as part of another
command

2.2.
i. echo 'hello world' | cat Output: hello world Explanation: First echo prints out "hello world", and it's
passed to cat as the input. cat will print its input to screen

ii. echo 'hello world' > cat Output: No output; create a file called 'cat', and the content is "hello world"
Explanation: echo prints "hello world", and got redirected into a file called cat

iii. echo 'hello world' 2> cat Output: hello world (printed on the screen); and create an empty file called
cat Explanation: echo prints "hello world" to the standard output, which is the screen by default. Standard
error was redirected to a file called cat. Since nothing was printed to stderr, the file is empty

2.3.
i. echo a && echo b Output:

Explanation: && means first run the command prior to it, and if the exit status is 0, run the command after it; if
the exit status is not 0, stop.

ii. echo a ; echo b Output:

Explanation: means run the command prior to it, and no matter what is the exit status, always run the

a

b

a

b

Explanation: ; means run the command prior to it, and no matter what is the exit status, always run the
command after it.

iii. echo a & echo b Output:

or

Explanation: & will put echo a in background and run echo b in foreground. So the output may come out in
any order

2.4.
To output the first 100 names in this file:

To identify the first 100 names by alphabetical order, and then output them and write them to a file called
'names.txt'

3.1.
The differences between thread_create(func) and fork() include:

thread_create doesn't need to make a copy of the invoking thread's memory. It will make both the
original thread and created thread share the invoking thread's memory. By contrast, fork will make a
copy of the parent process's memory, and the child will run using this copy.

Both thread_create and fork will give the created thread/process a new stack. fork creates this stack
from the parent process's stack, while thread_create creates a brand new stack. In other words, fork
will set %esp to a copy of the current bottom of the stack, thread_create will set %esp to the top of a
new stack within the same address space.

As indicated in the interface, thread_create takes a function pointer as the parameter. thread_create will
set the created thread's %eip to func , while fork will not touch %eip , since parent and child are
running the "same" code located at the "same" address.

3.2.

a

b

b

a

$ cat members.txt | grep "^Name:[a-zA-Z']\+$" | head -n100 | cut -d':' -f2

$ cat members.txt | grep "^Name:[a-zA-Z']\+$" | head -n100 | cut -d':' -f2 | sort | tee

names.txt

3.2.
There aren't many essential differences between these data structures. Each "process" has its own view of
memory (we will later study how this works), and multiple "threads" share a view of memory. But the actual OS
data structures used for each can be essentially the same.

4.1.

Note that the first two lines may come out in any order (boo before foo)

Note that even if we don't have sequential consistency, we can't get more outcomes than this. The reason is
that we assume join_thread() (which is a synchronization call) is implemented correctly. As mentioned in the
lecture notes, a correct implementation of a synchronization call includes an internal memory barrier.
Concretely, in order for the main thread to "see" the threads as complete, the main thread also has to see all of
the updates to memory by those threads.

4.2.
Use mutex to protect the shared state (integer i in this case), in both foo and boo

4.3.
If we modify our foo and boo to be:

foo: 1 foo: 0

boo: 0 or boo: 1

main: 2 main: 2

foo: 0 foo: 0

boo: 0 or boo: 0

main: 1 main: 2

mutex_t m;

void

foo(void *)

{

 lock(&m);

 int n = i;

 i = i + 1;

 printf("foo: %d\n", n);

 unlock(&m);

}

void

boo(void *)

{

 lock(&m);

Then the output should be:

Note: you can also put unlock before printf , then the possible output will be the above two, and also the
first two lines come in a different order:

 lock(&m);

 int n = i;

 i = i + 1;

 printf("boo: %d\n", n);

 unlock(&m);

}

foo: 0 boo: 0

boo: 1 or foo: 1

main: 2 main: 2

boo: 1 foo: 1

foo: 0 or boo: 0

main: 2 main: 2

	HW2 Solutions
	1.1.
	1.2.
	2.1.
	2.2.
	2.3.
	2.4.
	3.1.
	3.2.
	4.1.
	4.2.
	4.3.

