
New York University
CSCI-UA.0202: Operating Systems (Undergrad): Fall 2021

Midterm Exam

• This exam is 75 minutes. Stop writing when “time” is called. You must turn in your exam; we will
not collect it. Do not get up or pack up in the final ten minutes. The instructor will leave the room 78
minutes after the exam begins and will not accept exams outside the room.

• There are 11 problems in this booklet. Many can be answered quickly. Some may be harder than
others, and some earn more points than others. You may want to skim all questions before starting.

• This exam is closed book and notes. You may not use electronics: phones, tablets, calculators,
laptops, etc. You may refer to ONE two-sided 8.5x11” sheet with 10 point or larger Times New
Roman font, 1 inch or larger margins, and a maximum of 55 lines per side.

• Do not waste time on arithmetic. Write answers in powers of 2 if necessary.

• If you find a question unclear or ambiguous, be sure to write any assumptions you make.

• Follow the instructions: if they ask you to justify something, explain your reasoning and any important
assumptions. Write brief, precise answers. Rambling brain dumps will not work and will waste
time. Think before you start writing so that you can answer crisply. Be neat. If we can’t understand
your answer, we can’t give you credit!

• If the questions impose a sentence limit, we will not read past that limit. In addition, a response that
includes the correct answer, along with irrelevant or incorrect content, will lose points.

• Don’t linger. If you know the answer, give it, and move on.

• Write your name and NetId on this cover sheet and on the bottom of every page of the exam.

Do not write in the boxes below.

I (xx/9) II (xx/10) III (xx/14) IV (xx/15) V (xx/30) VI (xx/10) VII (xx/12) Total (xx/100)

Name: Solutions

NetId:

page 2 of 19

I Basics (9 points)

1. [3 points] How many possible settings are there for a bit?

2. bit means “binary digit”.

2. [6 points] Consider the following C program; read it carefully:

#include <stdio.h>

int b = 4; /* global variable */

void foo(int a) {

a = 5;

}

void bar(int* a) {

a = &b;

}

void baz(int* a) {

*a = 5;

}

int main() {

int a1 = 1, a2 = 1, a3 = 1;

foo(a1);

bar(&a2);

baz(&a3);

printf("%d, %d, %d", a1, a2, a3);

return 0;

}

What does this program print?

1, 1, 5.

Name: Solutions NYU NetId:

page 3 of 19

II Stacks and assembly (10 points)

3. [10 points] Below is some C code and the corresponding unoptimized assembly code.

100 int foo(int a) {
101 int b = a + 1;
102 return b;
103 }

104
105 int main() {
106 int a = 1;
107 int b = foo(a);
108 }

200 foo:

201 pushq %rbp

202 movq %rsp, %rbp

203 movq %rdi, -20(%rbp)

204 movq -20(%rbp), %rax

205 addq $1, %rax

206 movq %rax, -4(%rbp)

207 movq -4(%rbp), %rax

208 popq %rbp

209 ret

210
211 main:

212 pushq %rbp

213 movq %rsp, %rbp

214 subq $16, %rsp

215 movq $1, -8(%rbp)

216 movq -8(%rbp), %rax

217 movq %rax, %rdi

218 call foo

219 movq %rax, -4(%rbp)

220 movq $0, %rax

221 ret

Below are the meanings of some assembly instructions. This is mostly taken from the class notes.

movq A, B [move 64-bit data from A to B]

pushq %rax [subq $8, %rsp

movq %rax, (%rsp)]

popq %rax [movq (%rsp), %rax

addq $8, %rsp]

call 0x5000 [pushq %rip

movq $0x5000, %rip]

ret [popq %rip]

Name: Solutions NYU NetId:

page 4 of 19

Which assembly instruction will be executed after line 209 (ret) executes?

Write down the line number, for example 200.

line 219

When the process finishes executing line 201 (the first instruction of function foo), the top element on
the stack is the contents of register %rbp.

What is the element below that one on the stack, meaning the element that would be returned
by a second stack pop?

line 219.

What are the assembly instructions that represent line 106 (in the C code)?

Write down the line number or numbers, for example 200 or 200–222.

lines 215–216.

During a function call, the caller needs to save call-clobbered (also known as caller-saved) registers.
Where is the saving of call-clobbered registers happening in main() when calling foo()?

Write down the line number or numbers, for example 200 or 200–222. If there is no such saving
in this example, write “none.”

None.

Name: Solutions NYU NetId:

page 5 of 19

III Concurrent programming (14 points)

4. [10 points] This question asks about coding patterns with multithreaded programming. We have
two helper functions or methods:

– bool safe_to_proceed() is a function or method that returns a Boolean variable, which is
true if it’s safe to proceed, and false otherwise.

– bool progress_is_possible() is a function or method that returns a Boolean variable, which
is true if other threads can (according to the current memory state) possibly make progress, and
false otherwise. This function does not mutate (change) memory state.

We have a shared mutex m and a condition variable cv. Assume that each of the patterns below is
enclosed in the mutex’s acquire/release critical section.

Which of the following patterns abides by the cs202 concurrency commandments and common notions
of program correctness? (Hint: the answer is not “None”; you will need to circle at least one of the
items.)

Circle ALL that apply:

a while (safe_to_proceed())

cv.wait(&m);

b while (! safe_to_proceed())

cv.wait(&m);

c if (! safe_to_proceed())

cv.wait(&m);

d while (progress_is_possible())

cv.signal(&m);

e while (! progress_is_possible())

cv.signal(&m);

f if (progress_is_possible())

cv.signal(&m);

b and f.
a doesn’t make logical sense; it’s a garbled version of b.
c is a sin.
d and e could lead to infinite loops because the checked condition is either going to be true forever or
not, because we aren’t releasing the mutex, and nothing in the execution path of the program changes
program state.

5. [4 points] You write some multithreaded code. You follow the CS202 concurrency command-
ments, using one or more monitors.

Is deadlock possible? If so, give a concise example, or refer to one. If not, say why not. Do not
write more than two sentences.
Yes, deadlock is possible. We saw an example in class: the M monitor includes the N monitor.

Name: Solutions NYU NetId:

page 6 of 19

IV ls lab (15 points)

6. [15 points] The function file_tree_count(), listed below, starts at a directory (specified by
dirname) and is supposed to count all files in the directory and, recursively, all of the files in that
directory’s subdirectories (and in their subdirectories, etc.). file_tree_count() uses system calls
and logic similar to what you used in lab 2. However, it has three bugs, as indicated.

int file_tree_count(char* dirname)
{

int count = 0;
struct dirent* entry;
struct stat st;
char pathandname[512];

DIR* dir = opendir(dirname);

// **BUG 1**: What is the missing check between opendir and readdir?

while ((entry = readdir(dir)) != NULL) {

// **BUG 2**: A missing check. What kind of entries must we skip?

snprintf(pathandname, sizeof(pathandname),
"%s/%s", dirname, entry->d_name);

if (stat(pathandname, &st) == -1) {
continue;

}

if (S_ISDIR(st.st_mode)) {
// **BUG 3**: What is the bug in the following line?

count += file_tree_count(entry->d_name);

} else {
count++;

}

}

if (dir) closedir(dir);
return count;

}

Below, say what the three errors are. You need not propose the correct version of the code.

BUG 1:

BUG 2:

BUG 3:

Name: Solutions NYU NetId:

page 7 of 19

BUG 1: check whether dir is NULL.
BUG 2: skip the pseudodirectories “.” and “..” (some students said to skip all files beginning with “.”,
but that is not correct; the problem specified that all files should be listed).
BUG 3: need to pass the full path, not just the filename piece, to file tree count().

Name: Solutions NYU NetId:

page 8 of 19

V EStore lab (30 points)

7. [30 points] In lab 3, you filled out an EStore class with an inventory driven by multiple threads
executing handler functions. In this question, you will add support for two more EStore operations
and the corresponding handler functions:

– EStore::removeStock(): this method takes an item denoted by item id and quantity and
removes that much from inventory. If there aren’t enough of the item to remove, then wait until
there are enough.

– EStore::swapStock(): this method atomically adds stock to one item with parameters (add id,
add quantity) and removes stock from another item with parameters (remove id, remove quantity).
As above, if there aren’t enough of remove_id to remove, then wait until there are enough. When
adding stock, wake up any threads waiting to remove that item.

Notes:

– The lab has a notion of validity that is not operative here: you can assume that all items are valid.

– You should treat EStore as a monitor, meaning use a single mutex that is provided in the EStore
definition below.

– You do not have to worry about the interaction between the methods that you write here and the
ones that you implemented for lab 3, as long as the two operations introduced in this question are
properly synchronized with each other.

Complete the (a) request structs, (b) handlers, (c) EStore members, and (d) EStore methods.

// **** The following two structs belong in Request.h

struct RemoveStockReq

{

EStore* store;

// FILL IN BELOW

};

struct SwapStockReq

{

EStore* store;

// FILL IN BELOW

};

Name: Solutions NYU NetId:

page 9 of 19

// **** The following two handlers should be in RequestHandler.cpp

// * You need not print any handling messages.

// * Remember to delete your request.

void remove_stock_handler(void *args) {

// FILL THIS IN

}

void swap_stock_handler(void *args) {

// FILL THIS IN

}

// Possibly helpful definition, from EStore.h

class Item {

public:

bool valid; // assume always true

int quantity;

double price;

double discount;

Item();

˜Item();

};

Name: Solutions NYU NetId:

page 10 of 19

// The following is a snippet of class EStore

class EStore {

private:

Item inventory[INVENTORY_SIZE];

smutex_t mutex;

// ADD MORE HERE

public:

// ...

void removeStock(int item_id, int quantity);

void swapStock(int add_id, int add_quantity,

int remove_id, int remove_quantity);

// ...

};

void EStore::removeStock(int item_id, int quantity) {

// FILL THIS IN

}

void EStore::swapStock(int add_id, int add_quantity, int remove_id, int remove_quantity) {

// FILL THIS IN

}

Name: Solutions NYU NetId:

page 11 of 19

struct RemoveStockReq

{

EStore* store;

// FILL IN BELOW

int item_id;

int quantity;

};

struct SwapStockReq

{

EStore* store;

// FILL IN BELOW

int add_id;

int add_quantity;

int remove_id;

int remove_quantity;

};

// **** The following two handlers should be in RequestHandler.cpp

// * You need not print any handling messages.

// * Remember to delete your request.

void remove_stock_handler(void *args) {

// FILL THIS IN

struct RemoveStockReq* req = (struct RemoveStockReq*) args;

req->store->removeStock(req->item_id, req->quantity);

delete req;

}

void swap_stock_handler(void *args) {

// FILL THIS IN

struct SwapStockReq* req = (struct SwapStockReq*) args;

req->store->swapStock(req->add_id, req->add_quantity,

req->remove_id, req->remove_quantity);

delete req;

}

// Possibly helpful definition, from EStore.h

class Item {

public:

bool valid; // assume always true

int quantity;

double price;

double discount;

Item();

Name: Solutions NYU NetId:

page 12 of 19

˜Item();

};

// The following is a snippet of class EStore

class EStore {

private:

Item inventory[INVENTORY_SIZE];

smutex_t mutex;

// ADD MORE HERE

scond_t cond;

public:

// ...

void removeStock(int item_id, int quantity);

void swapStock(int add_id, int add_quantity,

int remove_id, int remove_quantity);

// ...

};

void EStore::removeStock(int item_id, int quantity) {

// FILL THIS IN

smutex_lock(&mutex);

while (inventory[item_id].quantity < quantity)

scond_wait(&cond, &mutex);

inventory[item_id].quantity -= quantity;

smutex_unlock(&mutex);

}

void EStore::swapStock(int add_id, int add_quantity, int remove_id, int remove_quantity) {

// FILL THIS IN

smutex_lock(&mutex);

while (inventory[remove_id].quantity < remove_quantity)

scond_wait(&cond, &mutex);

inventory[remove_id].quantity -= remove_quantity;

inventory[add_id].quantity += add_quantity;

scond_broadcast(&cond, &mutex);

smutex_unlock(&mutex);

}

Name: Solutions NYU NetId:

page 13 of 19

In SwapStock(), many students added items to the stock and then did while() wait();. But wait() releases
the mutex (before acquiring it again), so this pattern is not atomic, contrary to the specification in the
question. To atomically add and remove, both the add and remove have to happen without releasing
the mutex.

Name: Solutions NYU NetId:

page 14 of 19

Additional space if needed

Name: Solutions NYU NetId:

page 15 of 19

VI Scheduling (10 points)

8. [10 points] Consider the setup below, which follows an example from class. Time is divided into
epochs. Jobs arrive at the very beginning of the epoch listed under “arrival epoch”; after they have
been given the CPU for “burst length” epochs, they leave. Processes do no I/O.

process arrival epoch burst length

P1 0 5
P2 2 4
P3 3 1
P4 4 1

Assume that the scheduling algorithm is STCF (Shortest Time to Completion First, a preemptive
algorithm). Of course, in general, STCF cannot be implemented because an algorithm cannot know in
advance how long each process will run, but here we are given that information.

Write down the process scheduled for each epoch beneath the epoch number (as we did in class):

0 1 2 3 4 5 6 7 8 9 10

P1 P1 P1 P3 P4 P1 P1 P2 P2 P2 P2

What is the average turnaround time?

7+9+1+1 = 18/4 = 4.5

Name: Solutions NYU NetId:

page 16 of 19

VII Virtual memory and feedback (12 points)

9. [5 points] Assume an architecture with a 4-level page table, like the x86-64. But unlike the
x86-64, here there are 44 bits used for addressing, broken down as follows:

[7 bits | 9 bits | 8 bits | 10 bits | 10 bits]

The top 7 bits index into the L1 page table, the next 9 bits index into a L2 page table, and so forth. The
bottom 10 bits determine the offset into the physical page. (Side note: this architecture is not a good
idea, but that’s not relevant to the question.)

What is the maximum number of L2 page tables that can be allocated for a process on this
architecture?

27 = 128. There is one L1 page table. It has 128 entries. Each of these entries can point to another L2
page table.

10. [5 points] Describe a case where a memory reference on a machine with a hardware-
managed TLB (like the x86-64) results in a TLB miss but not a page fault. Do not write more
than two sentences.

The process references virtual memory that is mapped (according to the page tables) but hasn’t been
referenced in a while, so there’s no TLB entry for it. In this case, the hardware walks the page tables,
and installs the correct mapping in the TLB. Alternatively: A process is context-switched in, so its
TLB is cold, but the page tables are present and marked valid.

11. [2 points] This is to gather feedback. Any answer, except a blank one, will get full credit.

Please state the topic or topics in this class that have been least clear to you.

Please state the topic or topics in this class that have been most clear to you.

Name: Solutions NYU NetId:

page 17 of 19

Scratch space if needed

Name: Solutions NYU NetId:

page 18 of 19

Scratch space if needed

Name: Solutions NYU NetId:

page 19 of 19

End of Midterm

Name: Solutions NYU NetId:

	I Basics (9 points)
	II Stacks and assembly (10 points)
	III Concurrent programming (14 points)
	IV ls lab (15 points)
	V EStore lab (30 points)
	VI Scheduling (10 points)
	VII Virtual memory and feedback (12 points)

