
New York University
CSCI-UA.0202-003: Operating Systems (Undergrad): Fall 2024

Final Exam (V0)

• Write your name and NetId on this cover sheet and on the top of every page of the exam.

• This exam is 105 minutes. Stop writing when “time” is called. You must turn in your exam; we will
not collect them. Do not get up or pack up in the final ten minutes. The instructor will leave the room
110 minutes after the exam begins and will not accept exams outside the room.

• There are 21 problems in this booklet. Many can be answered quickly. Some may be harder than
others, and some earn more points than others. You may want to skim all questions before starting.

• This exam is closed book and notes. You may not use electronics: phones, tablets, calculators,
laptops, etc. You may refer to ONE two-sided letter-sized sheet that is written or typed by yourself.
Please write your name on the cheatsheet and turn in your cheatsheet as well.

• Do not waste time on arithmetic. Write answers in powers of 2 or in fractions if necessary.

• Solutions will be graded on correctness and clarity. Partial solutions will be graded for partial
credit. If the questions impose a sentence limit, we will not read past that limit. In addition, a response
that includes the correct answer, along with irrelevant or incorrect content, will lose points. Be neat.
If we can’t understand your answer, we can’t give you credit!

• If you find a question unclear or ambiguous, be sure to write any assumptions you make.

• There are two extra blank sheets of paper at the end of the exam. You may use these to continue
answers to any problems that take up more space than is provided, but you must make an indication
as to where we can find the rest of your work in order to receive credit.

• Write your answers only on the front of each page. Do not write on the back of any page.
Answers written on the back will not be graded.

Do not write in the boxes below.

I (xx/32) II (xx/11) III (xx/7) IV (xx/12) V (xx/16) VI (xx/12) VII (xx/10) Total (xx/100)

Name:

NetId:

Name: NYU NetId: page 2 of 18

I Short answer

1. [2 points] When implementing a high-performance web server that needs to serve static files to
thousands of concurrent users, which system call would you use to efficiently load and share these files
in memory across multiple worker processes, while minimizing disk I/O and memory duplication?

2. [4 points] Why is the block pointer structure in the unix inode sturcture inherently imbalanced?
Your answer should be at most 2 sentences.

3. [4 points] Consider a directory containing two files (data.txt and script.py) and one symbolic link
(shortcut). Running ls shows:

$ ls

data.txt script.py shortcut

However, running ls -l displays additional details including permissions and file sizes:

$ ls -l

-rw-r--r-- 1 user group 2048 Dec 12 10:30 data.txt

-rwxr-xr-x 1 user group 512 Dec 12 09:15 script.py

lrwxrwxrwx 1 user group 15 Dec 12 08:00 shortcut -> data.txt

In two sentences or less, explain why ls -l requires more system resources and CPU time compared
to the basic ls command.

DO NOT WRITE ON THE BACK OF THIS PAGE

Name: NYU NetId: page 3 of 18

4. [2 points] Who is mentioned in the “Reflections on Trusting Trust”. Circle ONE only:

A. Linus Torvalds

B. Dennis Ritchie

C. Alonzo Church

D. Alan Turing

5. [2 points] In a multi-level paging system like the one used by WeensyOS, what typically happens
to the page tables after the process_setup? Circle ONE only:

A. Only the top-level page table is allocated, and no lower-level page tables are created until memory
is accessed.

B. The top-level page table is allocated, and some necessary lower-level page tables are populated to
map the process’s initial code and data segments, but other portions of the virtual address space
remain unallocated until needed.

C. All levels of the page table are fully populated for the entire virtual address space at process start.

D. The process’s initial address space is left completely unmapped, and page tables are created only
when the process encounters a page fault.

6. [2 points] Which factors contribute to context switching overhead?
Circle ALL that apply:

A. Saving and restoring register values

B. Memory allocation

C. TLB flushing

D. Process priority calculation

E. Cache invalidation

7. [2 points] What happens when you delete a file that has >= 1 hard links?
Circle ALL that apply:

A. All instances of the file are immediately deleted

B. The file is deleted only after its final remaining hard link is removed.

C. The link count decreases by one, but the file data remains until the last link is deleted

D. The file becomes corrupted

E. Only the directory entry is removed while other hard links remain unchanged

DO NOT WRITE ON THE BACK OF THIS PAGE

Name: NYU NetId: page 4 of 18

8. [2 points] Which of the following aspects of bootstrapping did we cover in the “putting it
together” class? Circle all that apply:

A. The BIOS loads the firmware into memory.

B. The firmware initializes hardware components.

C. The firmware executes the bootloader from disk.

D. The bootloader unpacks the kernel image.

E. The kernel decompresses the drivers from the BIOS.

9. [4 points] This question is about Lab 5. Circle True or False for each item below:
True / False In this lab’s file system implementation, inodes and data blocks are stored in separate
regions on the disk.

True / False The bitmap in this file system starts immediately after the superblock at disk block 1.

True / False When using FUSE, the file system implementation must interact directly with the
hardware disk.

True / False The layout of the meta-data describing a file in our file system is described by struct
inode in fs_types.h.

10. [4 points] This question is about smashing the stack. Circle True or False for each item
below:
True / False When a buffer overflow occurs, it always results in a program crash.

True / False A stack smashing attack can modify variables in the heap.

True / False Buffer overflows in stack-allocated arrays can potentially overwrite other local variables
in the same function.

True / False Writing past the end of an array on the stack can corrupt the stack frame of the calling
function.

11. [4 points] This question is about setuid programs and related attacks. Circle True or False for
each item below:
True / False Setting IFS (Internal Field Separator) to include ’/’ can affect how setuid programs parse
paths and filenames.

True / False TOCTTOU (Time of Check to Time of Use) attacks do not work if the setuid program
checks file permissions before opening files.

True / False The real user ID is the privileged version of the effective user ID.

True / False A setuid program runs with root privileges if it’s owned by root.

DO NOT WRITE ON THE BACK OF THIS PAGE

Name: NYU NetId: page 5 of 18

II C basics

12. [5 points] Examine this program:

#include <stdio.h>

void f(int* a, int* b) {

int temp = *a;

a = b;

b = &temp;

*a = 12;

}

int main() {

int x = 5, y = 8;

f(&x, &y);

printf("%d %d\n", x, y);

return 0;

}

What will this program output?

DO NOT WRITE ON THE BACK OF THIS PAGE

Name: NYU NetId: page 6 of 18

13. [6 points] Write a function that takes a string and returns a new string with its first character
repeated n times. The new string should be dynamically allocated. Your code should be syntactically
correct and logically complete.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

// Some helper functions

char* malloc(size_t size);

void free(void* ptr);

size_t strlen(const char* str); // Returns string length

char* strcpy(char* dest, const char* src); // Copies string from src to dest

char* repeat_first(const char* str, int n) {

// Your code here

}

int main() {

const char* test = "Hello";

char* result = repeat_first(test, 3);

printf("%s\n", result); // Should print "HHHello"

free(result);

return 0;

}

DO NOT WRITE ON THE BACK OF THIS PAGE

Name: NYU NetId: page 7 of 18

III I/O

14. [7 points] You are developing a file compression application on a POSIX-like operating system
running on a multi-core machine. The application includes a graphical user interface and must handle
large files (approximately 1GB each).

Your key requirements are:

1. Concurrent processing: The application should be able to process multiple large files at the same
time. By “concurrent,” we mean that it should utilize multiple CPU cores and disk operations in
parallel, rather than processing files strictly one after another.

2. UI responsiveness: The graphical user interface must remain responsive throughout the com-
pression process, allowing the user to interact with the application, see progress, and potentially
cancel operations at any time.

3. Compression ratio: For text files, the compression ratio should meet or exceed 2:1.

4. Performance: The compression should run as fast as possible, making efficient use of available
system resources.

(4 points) Assume that you implement all file I/O using only synchronous system calls. Which two
of the above requirements would definitely fail under this approach? Explain why, specifically
referencing the behavior of synchronous I/O calls.

(3 points) A junior developer suggests: “Let’s create multiple threads, with each thread perform-
ing synchronous I/O on a single file. This should solve the problems we identified, right?” Discuss
whether this multi-threaded approach fully addresses the issues from part (a).

DO NOT WRITE ON THE BACK OF THIS PAGE

Name: NYU NetId: page 8 of 18

IV Scheduling

15. [6 points] Consider the relationship between First come first serve (FCFS) and multi-level
feedback queue (MLF) scheduling. Multi-level feedback queues have parameters to define the number
of queues, the scheduling algorithm for each queue, the criteria to move processes between queues,
and when to interrupt running processes. FCFS selects the process that comes first to run next. Given
this context:

Can FCFS simulate MLF for all possible parameters of multi-level feedback? Justify your answer
briefly.

Can MLF simulate FCFS? Justify your answer briefly.

DO NOT WRITE ON THE BACK OF THIS PAGE

Name: NYU NetId: page 9 of 18

16. [6 points] A system administrator observes that their round-robin scheduler is causing significant
overhead and decides to experiment with adaptive time quantum adjustment. They implement a new
policy: if a process uses its entire time quantum three times in a row, its next quantum is doubled. If a
process yields the CPU before using half its quantum three times in a row, its next quantum is halved.
The quantum cannot go below 10ms or above 160ms.

Consider three types of processes running on this system:

– Database processes that typically run for 5ms before waiting for disk I/O

– Web servers that run for around 15ms processing each request

– Video encoders that run continuously for long periods

Explain how the quantum for each type of process would likely evolve over time, and whether
this adaptive policy would improve or worsen overall system performance compared to a fixed
quantum. Justify your answer by considering both process behavior and system overhead.

DO NOT WRITE ON THE BACK OF THIS PAGE

Name: NYU NetId: page 10 of 18

V Trusting Trust

17. [4 points] Consider this C program:

int main() {

char *code = "int main() {\n char *code = %c%s%c;\n printf(code, 34, code, 34);

\n return 0;\n}";

printf(code, 34, code, 34);

return 0;

}

What is the output of this program? What key property does this program demonstrate?

DO NOT WRITE ON THE BACK OF THIS PAGE

Name: NYU NetId: page 11 of 18

18. [12 points] A malicious programmer modifies a C compiler with this code:

if (compiling_login_program) {

insert_backdoor();

} else if (compiling_c_compiler) {

insert_this_code();

}

When this modified compiler compiles a clean login.c, will the resulting binary contain a back-
door? Why?

What is the purpose of the second condition (compiling c compiler)?

If we compile a clean compiler.c using the compromised compiler, then use that new compiler to
compile login.c - will the login binary contain a backdoor? Explain briefly.

DO NOT WRITE ON THE BACK OF THIS PAGE

Name: NYU NetId: page 12 of 18

VI File System

inode array data blocks

0 1 2

12 ...

10

11

11

10

12

13

10

< m,9 >

11

< a.c,12 >

12

< x,10 >

< y,11 >

13 14

19. [4 points] Consider the simple file system depicted above, with the following characteristics:

– Each inode contains a single data block pointer, depicted inside the inode structure.

– Note that inodes and data blocks are numbered separately. (The confusion is intentional; we are
asking you to think about what the different numbers mean.)

– As mentioned in class, inode 2 contains the inode for the root directory of the file system.

State the contents of the file system in terms of the full path names of files.

DO NOT WRITE ON THE BACK OF THIS PAGE

Name: NYU NetId: page 13 of 18

20. [8 points] NFS introduces several non-traditional Unix semantics when handling file operations.
Select TWO examples below and for each:

(1) Compare how traditional Unix and NFS behave differently

(2) Explain the fundamental reasons why NFS had to deviate from Unix behavior

A. Error returns on successful operations

B. Inode reuse after file deletion

C. Server failure handling

D. File permission changes on open files

DO NOT WRITE ON THE BACK OF THIS PAGE

Name: NYU NetId: page 14 of 18

VII Weensy OS

21. [10 points] Implement the get_permission_bits function that determines the permission bits
for a given virtual address by walking the x86-64 4-level page table.

The function should:

– Walk all levels of the page table

– Track the accumulated permissions

– Return -1 if the page is not mapped at any level

– Return the final permission bits if the page is mapped

Here are some helpful macros you might want to use.

// Required type definitions

typedef uint64_t x86_64_pageentry_t; // Type for page table entries

typedef struct x86_64_pagetable {

x86_64_pageentry_t entry[512]; // 512 entries per page table

} x86_64_pagetable;

// Permission bit flags

#define PTE_P 0x1 // Present

#define PTE_W 0x2 // Writeable

#define PTE_U 0x4 // User-accessible

#define PTE_X 0x8 // Executable

// Helper macros

#define PAGESIZE 4096

#define PAGEOFFSET(addr) ((addr) & 0xFFF)

#define PAGEINDEX(addr, l) ((((addr) >> (12 + 9 * (l))) & 0x1FF))

#define PTE_FLAGS(pte) ((pte) & 0xFFF) // Extract flags

#define PTE_ADDR(pte) ((pte) & ˜0xFFF) // Extract address

Fill in the function implementation on the next page. Please write syntactically valid C code.

DO NOT WRITE ON THE BACK OF THIS PAGE

Name: NYU NetId: page 15 of 18

// The function need to implement

int get_permission_bits(x86_64_pagetable* pt, uintptr_t va) {

}

DO NOT WRITE ON THE BACK OF THIS PAGE

Name: NYU NetId: page 16 of 18

Scratch space if needed

DO NOT WRITE ON THE BACK OF THIS PAGE

Name: NYU NetId: page 17 of 18

Scratch space if needed

DO NOT WRITE ON THE BACK OF THIS PAGE

Name: NYU NetId: page 18 of 18

End of the Final Exam

DO NOT WRITE ON THE BACK OF THIS PAGE

	I Short answer
	II C basics
	III I/O
	IV Scheduling
	V Trusting Trust
	VI File System
	VII Weensy OS

