
New York University
CSCI-UA.202: Operating Systems (Undergrad): Spring 2021

Final Exam (Given remotely)

• This exam is 110 minutes.

• There are 14 problems in this booklet. Many can be answered quickly. Some may be harder than
others, and some earn more points than others. You may want to skim all questions before starting.

• This exam is open book, open notes, open web. Recommended sources are the course home page,
and all assigned readings. If you consult anything else during the exam, even if you paraphrase it,
you MUST cite it (with URL). Not doing this will result in an F on the exam, no questions asked.

• Do not waste time on arithmetic. Write answers in powers of 2 if necessary.

• If you find a question unclear or ambiguous, be sure to write any assumptions you make.

• Follow the instructions: if they ask you to justify something, explain your reasoning and any important
assumptions. Write brief, precise answers. Rambling brain dumps will not work and will waste
time. Think before you start writing so that you can answer crisply. Be neat. If we can’t understand
your answer, we can’t give you credit!

• If the questions impose a sentence limit, we will not read past that limit. In addition, a response that
includes the correct answer, along with irrelevant or incorrect content, will lose points.

• Don’t linger. If you know the answer, give it, and move on.

• Write your name and NetId on the document in which you are working the exam.

Do not write in the boxes below.

I (xx/11) II (xx/24) III (xx/19) IV (xx/14) V (xx/24) VI (xx/8) Total (xx/100)

page 2 of 17

I C and Assembly (11 points)

1. [6 points] The function below, written in C, compiles. However, it is buggy.

uint64_t* multiply_by_3(uint32_t x) {

uint64_t y;

uint64_t* z;

y = x * 3;

z = &y;

return z;

}

Describe the bug in the code, using no more than two sentences.

2. [5 points] Here is a program excerpt in x86-64 assembly:

movq $1, %rax

movq $2, %rbx

movq $3, %rcx

movq $4, %rdx

movq $5, %rdi

pushq %rax

pushq %rbx

pushq %rcx

pushq %rdx

pushq %rdi

popq %r8

popq %r9

popq %r10

popq %r11

popq %r12

After this excerpt executes, what values are in each of the registers? Fill in the table below.

Name: NYU NetId:

page 3 of 17

register value
%rax

%rbx

%rcx

%rdx

%rdi

%r8

%r9

%r10

%r11

%r12

Name: NYU NetId:

page 4 of 17

II Concurrent programming (24 points)

3. [15 points] In this problem you will simulate a simplified auction, encapsulated in a monitor,
Auction. Your job is to finish the implementation of Auction. Here is the specification:

– Auction has NUM_BIDS slots to hold bids; an auction can happen only when all of these slots are
full.

– There are endless buyer threads, each of which makes a bid by calling the Auction::RegisterBid()
method. If there are no free slots to hold bids, this method must wait. Otherwise, this method
inserts its bid into a free slot (after which the slot is no longer free). After it does so, the method
returns; in particular, the method does not wait for the results of the auction.

– There are one or more auctioneer threads, which each call the Auction::SelectWinner()
method. This method simulates a single auction. Per the first bullet, this method can proceed only
if all slots are occupied. Otherwise, it waits. When it does proceed, it computes the maximum bid
from among all candidate bids in the Auction, clears all of the slots, and returns the maximum
bid.

– You must follow the class’s concurrency commandments.

– Don’t wake threads unnecessarily.

Hint: Write helper functions, for example to determine whether there are free slots.

Where indicated, fill in the variables and methods for the Auction object. Remember to follow
the concurrency commandments.

Auction auction; // global

class Auction {

public:

Auction();

˜Auction();

void RegisterBid(uint32_t amount);

uint32_t SelectWinner();

private:

uint32_t bids[NUM_BIDS]; // bids[i] == 0 means that slot i is free

// ADD MORE HERE

};

Name: NYU NetId:

page 5 of 17

Auction::Auction()

{

memset(bids, 0, sizeof(bids));

// FILL THIS IN

}

void

Auction:RegisterBid(uint32_t amount)

{

// We use 0 to mean "slot free"

assert(amount > 0);

// FILL THIS IN

}

uint32_t

Auction:SelectWinner()

{

// FILL THIS IN

}

Name: NYU NetId:

page 6 of 17

4. [4 points] Recall the multiple reader, single writer example that we saw in class. Pseudocode is
below and on the next page. As discussed in class, this example implements a policy: “any waiting
writer executes ahead of any waiting reader.” Consider this example with the following alternate
implementation of doneWrite:

Database::doneWrite() {

acquire(&mutex);

AW--;

if (WR > 0) {

broadcast(&okToRead, &mutex);

}

if (WW > 0) {

signal(&okToWrite, &mutex);

}

release(&mutex);

}

Does this modified example prioritize the execution of readers? If so, explain why. If not, explain
why not. Use no more than two sentences.

1 // assume that these variables are initialized in a constructor

2 state variables:

3 AR = 0; // # active readers

4 AW = 0; // # active writers

5 WR = 0; // # waiting readers

6 WW = 0; // # waiting writers

7
8 Condition okToRead = NIL;

9 Condition okToWrite = NIL;

10 Mutex mutex = FREE;

11
12 Database::read() {

13 startRead(); // first, check self into the system

14 Access Data

15 doneRead(); // check self out of system

16 }

17
18 Database::startRead() {

19 acquire(&mutex);

20 while ((AW + WW) > 0){
21 WR++;

22 wait(&okToRead, &mutex);

23 WR--;

24 }

Name: NYU NetId:

page 7 of 17

25 AR++;

26 release(&mutex);

27 }

28
29 Database::doneRead() {

30 acquire(&mutex);

31 AR--;

32 if (AR == 0 && WW > 0) {
33 signal(&okToWrite, &mutex);

34 }

35 release(&mutex);

36 }

37
38
39 Database::write(){ // symmetrical

40 startWrite(); // check in

41 Access Data

42 doneWrite(); // check out

43 }

44
45 Database::startWrite() {

46 acquire(&mutex);

47 while ((AW + AR) > 0) {
48
49 WW++;

50 wait(&okToWrite, &mutex);

51 WW--;

52 }

53 AW++;

54 release(&mutex);

55 }

56
57 Database::doneWrite() {

58 acquire(&mutex);

59 AW--;

60 if (WW > 0) {
61 signal(&okToWrite, &mutex); // give priority to writers

62 } else if (WR > 0) {
63 broadcast(&okToRead, &mutex);

64 }

65 release(&mutex);

66 }

Name: NYU NetId:

page 8 of 17

5. [5 points] In the EStore lab (lab 3), in the fine-grained locking section (part C), you should
have introduced multiple locks, each covering a unit of code or data smaller than the entire inventory.
The purpose was to allow multiple threads to operate on the inventory concurrently. But introducing
multiple locks makes code more prone to deadlocks.

What did you do to avoid deadlock? Or, if you did not get this aspect of the assignment correct,
what should you have done to avoid deadlock? Limit your answer to three sentences, but be
precise.

Name: NYU NetId:

page 9 of 17

III Virtual memory (19 points)

6. [4 points] In this problem, you will describe how the implementation of malloc() can exploit
paging so that the system (as a whole) can detect certain kinds of underruns, which are a kind of illegal
memory reference. Consider this code:

int *a = malloc(sizeof(int) * 100); /* allocates space for 100 ints */

int *b = &a[10]; /* b points to the 10th element of array a */

...

(b - 20) = 5; / This is an underrun, and is an illegal memory reference. */

When the above executes, the process would ideally page fault as a result of an illegal memory reference,
at which point the kernel would end the process.

Assume that malloc() can manipulate the virtual address space of the process (for example, using
mmap(), or else you can assume that malloc() itself is a system call).

Describe how the implementation of malloc() can arrange for page faults when there are
underruns like the one above. Do not write more than three sentences.

Name: NYU NetId:

page 10 of 17

7. [15 points] The code below is from WeensyOS (lab 4); this code creates the kernel’s page table
just after WeensyOS boots up. For reference, the code is in k-hardware.c; you’re welcome to pull up
the whole file if the context will be helpful.

1 // virtual_memory_init

2 // Initialize the virtual memory system, including an initial page table

3 // ‘kernel_pagetable‘.

4
5 static x86_64_pagetable kernel_pagetables[5];
6 x86_64_pagetable* kernel_pagetable;

7
8 void virtual_memory_init(void) {
9 kernel_pagetable = &kernel_pagetables[0];

10 memset(kernel_pagetables, 0, sizeof(kernel_pagetables));
11 kernel_pagetables[0].entry[0] =

12 (x86_64_pageentry_t) &kernel_pagetables[1] | PTE_P | PTE_W | PTE_U;

13 kernel_pagetables[1].entry[0] =

14 (x86_64_pageentry_t) &kernel_pagetables[2] | PTE_P | PTE_W | PTE_U;

15 kernel_pagetables[2].entry[0] =

16 (x86_64_pageentry_t) &kernel_pagetables[3] | PTE_P | PTE_W | PTE_U;

17 kernel_pagetables[2].entry[1] =

18 (x86_64_pageentry_t) &kernel_pagetables[4] | PTE_P | PTE_W | PTE_U;

19
20 virtual_memory_map(kernel_pagetable, (uintptr_t) 0, (uintptr_t) 0,

21 MEMSIZE_PHYSICAL, PTE_P | PTE_W | PTE_U, NULL);

22
23 lcr3((uintptr_t) kernel_pagetable);

24 }

Assume that, before virtual_memory_init() executes, the boot loader has configured virtual
memory to set up an identity mapping (“virtual address x maps to physical address x”) for all virtual
addresses that virtual_memory_init() uses when executing (its instruction addresses and the
memory addresses that it loads from and stores to). If that assumption confuses you, you can ignore it.

The purpose of virtual_memory_init() is to construct and configure the kernel’s page tables
(Lines 9–21) and then to load the physical address of the level-1 (L1) page table into the x86-64’s %cr3
register (Line 23), thereby telling the MMU to translate virtual addresses according to this page table.

This question asks you to walk through each of the seven (7) lines of code in lines 9–21, and describe
the specific function of each line. (There are seven (7) lines of code because a line of code is defined as
code that ends in a semicolon, even if that line breaks across multiple literal lines.) Your answer should
cover the following.

– What does each line of code specifically do to construct the kernel’s page table?

– What are the contents of the L1, L2, L3, and L4 page tables?

– Once virtual_memory_init() completes execution, which virtual address ranges are mapped
to which physical address ranges?

Name: NYU NetId:

page 11 of 17

IV I/O (14 points)

8. [9 points] Consider a disk with the following characteristics:

– The disk has 8 platters (and 8 corresponding heads); changing which head is active has zero cost.

– The disk makes 128 rotations per second.

– Each sector is 4096 bytes.

– There are 1024 tracks per platter.

– Inner tracks have fewer sectors than outer tracks, specifically for a given platter, the number of
sectors on track i is 4 · i, for i = 1, . . . ,1024.

– The track-to-track seek time is 0 milliseconds.

– The average seek time for a read is 10.5 ms; for a write it is 12 ms.

– The maximum seek time is 16 ms.

– Ignore the time to transfer the bits from the disk to memory; that is, once the disk head is
positioned over the sector, the transfer happens instantaneously.

For the questions below, you will generally want to be working with powers of 2. To that end, here is a
potentially helpful table:

26 = 64 211 = 2048
27 = 128 212 = 4096
28 = 256 213 = 8192
29 = 512 220 bytes = 1 megabyte (MB)
210 = 1024 230 bytes = 1 gigabyte (GB)

What is the storage capacity of the disk in bytes or gigabytes? Explain briefly (for example by
showing your work).

Now, assume that we have two disks of the kind above, connected to the same machine. We arrange to
make them exact replicas of each other; this is known as RAID-1, and we now refer to a logical sector,
recognizing that we can fetch a logical sector’s data from either of the two identical disks. You can do
the question below even if you did not answer the prior question.

If the two-disk system is at capacity (that is, storing the maximum amount of data), what is the
minimum time in seconds to read all logical sectors into memory? (Assume that there is enough
RAM to store all of the data.) Explain briefly, for example by showing your work.

Name: NYU NetId:

page 12 of 17

9. [5 points] Assume an operating system (OS) that presents a completely synchronous I/O interface
to processes. This means: (1) if a system call requires the OS to perform I/O, that system call blocks
until the I/O is complete; and (2) there is no way for a process to ask the OS whether a given call would
block. (As a technical point, there is no memory mapping of files.) Assume a process that has four
user-level threads.

How many I/O requests from this process can be pending at the OS at once? Explain your
answer in no more than two sentences.

Name: NYU NetId:

page 13 of 17

V File systems and crash recovery (24 points)

10. [4 points] In the classic Unix file system, the i-node is an imbalanced tree. The purpose of the
imbalance is to optimize access to short files: for short files, one can get the fileblock-to-diskblock
mappings by looking directly in the inode, with no need to seek to indirect blocks. Your friend has an
idea: let’s avoid such seeks even for large files, by expanding the number of direct block slots in an
inode to 223 (≈ 8 million) such slots. This idea would indeed eliminate seeks to indirect blocks even
for fairly large files. But it has a substantial disadvantage.

State the disadvantage of your friend’s idea. Use no more than two sentences.

11. [6 points] Your friend wants to build a file system that tolerates crashes. Your friend proposes
write-behind journaling. In this proposal, there is a journal, but the file system writes to the journal
only after checkpointing (“checkpointing”, recall, means applying an operation to the on-disk data
structures). Specifically, (1) the file system writes a TxnEnd record for a given transaction only after
the TxnBegin record and all journal entries for the given transaction are written, and (2) the file system
writes individual journal entries only after checkpointing the operation described by that entry. The
recovery protocol looks for incomplete operations (those that are part of a transaction that lacks a
TxnEnd record) and undoes those operations, similar to the way that recovery works for undo-only
logging.

Assume that a crash can happen at any time. Does your friend’s proposal work? If so, argue
that it is correct. If not, explain why not. Use no more than four sentences.

Name: NYU NetId:

page 14 of 17

12. [14 points] This question has two independent parts; both take place within the lab 5 file system
structure and code. Helper functions and declarations are on the next page.

Part A. Recall that an inode implements a mapping between virtual file block numbers and actual disk
block numbers; that is, for file block k, one can consult the inode to find which disk block, if any, holds
the data of file block k.

You will write a function that, for a given inode ino, returns the disk block number associated with
virtual file block 8225 (that is, the number of the disk block that holds the data of file block 8225).
Your function should not call inode_block_walk() or inode_get_block(), and it should not have
any hard-coded constants or magic numbers except 8225; in particular, your function should compute
the indexes that it needs to use in various data structures. You can and should assume that file block
8225 is allocated. Write in syntactically valid C.

Fill in fileblock8225 to diskblock() below, in syntactically valid C.

uint32_t fileblock8225_to_diskblock(struct inode *ino)

{

// FILL THIS IN.

// - Do not use inode_block_walk or inode_get_block.

// - Assume that file block 8225 is allocated.

}

Part B. Write a function, inode_off2byte(), that, for a given inode ino, takes as input an offset in
the corresponding file and returns the byte at that offset. In this part, you can use inode_block_walk()
or inode_get_block(). You may assume that the block containing the requested offset is allocated.
Write in syntactically valid C.

Fill in inode off2byte() below, in syntactically valid C.

char inode_off2byte(struct inode* ino, uint32_t offset)

{

// FILL THIS IN.

}

Name: NYU NetId:

page 15 of 17

// Maps a block number to a usable address in memory. Makes use of the

// fact that the simulated disk is memory-mapped.

void* diskaddr(uint32_t blockno);

// You implemented this function in lab5. It finds the disk block number slot

// for the ’filebno’th block in inode ’ino’. It sets ’*ppdiskbno’ to point

// to that slot. Returns 0 on success, < 0 on error.

int inode_block_walk(struct inode *ino, uint32_t filebno, uint32_t **ppdiskbno, bool alloc);

// You implemented this function in lab5. It sets *pblk to the address in

// memory where the filebno’th block of inode ’ino’ is mapped.

// Returns 0 on success, < 0 on error.

int inode_get_block(struct inode *ino, uint32_t file_blockno, char **pblk);

/* Excerpted from fs_types.h in lab5 */

// The size of a block in the file system.

#define BLKSIZE 4096

// The number of blocks which are addressable from the direct

// block pointers, the indirect block, and the double-indirect block.

#define N_DIRECT 10

#define N_INDIRECT (BLKSIZE / 4)

#define N_DOUBLE ((BLKSIZE / 4) * N_INDIRECT)

#define MAX_FILE_SIZE ((N_DIRECT + N_INDIRECT + N_DOUBLE) * BLKSIZE)

struct inode {

uid_t i_owner; // Owner of inode.

gid_t i_group; // Group membership of inode.

mode_t i_mode; // Permissions and type of inode.

dev_t i_rdev; // Device represented by inode, if any.

uint16_t i_nlink; // The number of hard links.

int64_t i_atime; // Access time (reads).

int64_t i_ctime; // Change time (chmod, chown).

int64_t i_mtime; // Modification time (writes).

uint32_t i_size; // The size of the inode in bytes.

// Block pointers.

// A block is allocated iff its value is != 0.

uint32_t i_direct[N_DIRECT]; // Direct blocks.

uint32_t i_indirect; // Indirect block.

uint32_t i_double; // Double-indirect block.

} __attribute__((packed));

Name: NYU NetId:

page 16 of 17

VI Security and feedback (8 points)

13. [7 points] Assume that a multiuser Unix system has a buggy implementation of passwd. As
usual, passwd is a setuid executable that is owned by root, world executable, and world readable; thus,
any user on the system can invoke passwd, and when they do, the resulting process runs with root’s
privileges. The aforementioned bug allows any invoker of passwd to mount a buffer overflow attack,
and thereby gain a root shell. Assume that this version of passwd is the only buggy program on the
system (that’s wildly unrealistic, but it will keep the question focused).

An adversarial user on the system knows about the vulnerability in passwd. This user figures that
eventually the root user (as system administrator) will replace passwd with a non-buggy version. But
the adversarial user wants to be able to invoke the buggy version of passwd in the future to gain root
access. So the adversarial user takes some action A.

Later, the root user indeed replaces passwd with a non-buggy version:

rm /sbin/passwd

apt source passwd // gets the source for the updated passwd

...

make install // replaces /sbin/passwd with a non-buggy version

Yet, some time after root does the above, the adversarial user somehow gets a root shell.

What was action A? Explain why action A resulted in the attacker being able to get a root shell.
Limit your answer to three sentences. Hint: the attacker didn’t copy passwd; invoking the copy
would not have been sufficient to gain a root shell.

14. [1 points] This is to gather feedback. Any answer, except a blank one, will get full credit.

Please state the topic or topics in this class that have been least clear to you.

Please state the topic or topics in this class that have been most clear to you.

Name: NYU NetId:

page 17 of 17

End of Final
Congrats on finishing CS202!!

Name: NYU NetId:

	I C and Assembly (11 points)
	II Concurrent programming (24 points)
	III Virtual memory (19 points)
	IV I/O (14 points)
	V File systems and crash recovery (24 points)
	VI Security and feedback (8 points)

