
The University of Texas at Austin
CS 372H Introduction to Operating Systems: Honors: Spring 2011

FINAL EXAM

• This exam is 3 hours. Stop writing when “time” is called. You must turn in your exam; we will not
collect it. Do not get up or pack up in the final ten minutes. The instructor will leave the room 3
hours and 3 minutes after the exam begins and will not accept exams outside the room.

• There are 27 questions in this booklet. Some may be harder than others, and some earn more points
than others. You may want to skim all questions before starting. Note that you are going to need to
move through the short ones quickly.

• This exam is closed book and notes. You may not use electronics: phones, calculators, laptops,
etc. You may refer to TWO two-sided 8.5x11” sheet with 10 point or larger Times New Roman font,
1 inch or larger margins, and a maximum of 55 lines per side.

• If you find a question unclear or ambiguous, be sure to write any assumptions you make.

• Follow the instructions: if they ask you to justify something, explain your reasoning and any im-
portant assumptions. Write brief, precise answers. Rambling brain dumps will not work and
will waste time. Think before you start writing so you can answer crisply. Be neat. If we can’t
understand your answer, we can’t give you credit!

• Grading for True/False questions is as follows. We grade by individual True/False item: correct
items earn positive points, blank items earn 0 points, and incorrect items earn negative points. How-
ever, the minimum score on any question—that is, any group of True/False items—is 0.

• There is almost no credit for leaving questions blank. The exception is as follows: if a problem is
worth 6 or more points, then completely blank answers will get 15%-20% of the credit. Note that
by problem we mean numbered questions for which a point total is listed. Sub-problems with no
points listed are not eligible for this treatment. Thus, if you attempt any sub-problem, you may as
well attempt the other sub-problems in the problem.

• Don’t linger. If you know the answer, give it, and move on.

• Write your name and UT EID on this cover sheet and on the bottom of every page of the exam.

Do not write in the boxes below.

I (xx/25) II (xx/20) III (xx/19) IV (xx/23) V (xx/13) Total (xx/100)

Name: UT EID:



page 2 of 19

I Concurrency and other pre-midterm material (25 points total)

1. [4 points]
Circle True for False for each item below:
True / False On the x86, if a given memory reference (load or store) causes a TLB miss, then that
memory reference also causes a page fault.

True / False In JOS, if an environment issues a syscall, thereby causing the x86 to begin executing
the kernel, the processor flushes the TLB before switching to supervisor mode and executing kernel
code.

True / False Under gcc’s calling conventions, when a function f() calls a function g() that takes
arguments, f() pushes arguments on the stack for g().

True / False Under gcc’s calling conventions, when a function f() calls a function g() that takes
arguments, g() can gain access to the arguments through the stack frame pointer (%ebp on the x86).

2. [3 points] Most round-robin schedulers use a fixed size quantum. Give an argument in favor of
and against a small quantum.

Below, briefly state two arguments, one for and and one against a small quantum:

3. [15 points] In this problem, you are the organizer of an expo that specializes in electronic
entertainment. You want to allow attendees to play a new game demo. You model the attendees as
threads, called players, and your job is to synchronize access to a single copy of the game, as follows:

– When a player arrives, he or she waits in a waiting area.
– Once there are 4 or more players waiting to play, you allow exactly 4 of them to leave the waiting

area to begin playing. These four leave the waiting area and approach the game console.
– When a player reaches the console, the player waits until all four players are at the console, at

which point all four players begin playing.
– A player may leave the console. However, you cannot allow any new players to begin playing

until all four players have left.
– You need not let players out of the waiting area in the order in which they arrived.
– You cannot assume that a player will ever finish playing.

Name: UT EID:



page 3 of 19

You decide to solve this synchronization problem using two types of barriers:

GameBarrier gb;
ConsoleBarrier cb;

The definition of these barriers is on the next page. The use of these barriers is given by the following
sequence for a player. Note that each player thread has a pointer to two global barriers.

void player(thread_id tid, GameBarrier* gb, ConsoleBarrier* cb) {

gb->waitToPlay();

cb->waitAtConsole();

play();

gb->donePlaying();
}

The GameBarrier can be in one of three states:

– GAME NOTREADY: There are fewer than four players waiting to play. When the barrier is in this
state, no player can progress beyond waitToPlay().

– GAME FILLING: There are (or were) at least four players waiting to play, and either we are in
the first turn or else all four players from the prior turn have departed (via donePlaying()).
When the barrier is in this state, a player can progress beyond waitToPlay(), and in fact four
players must progress beyond this function. When exactly four players have progressed beyond
this function, the barrier enters the GAME FILLED state.

– GAME FILLED: Four players have been sent to the console, and the turn is not over (meaning that
the departure of all four from the console via donePlaying() has not yet taken place). When
the barrier is in this state, no waiting player can progress beyond waitToPlay().

The ConsoleBarrier can be in one of two states:

– CONSOLE WAIT: Four players have not yet arrived at the console in the current round. When the
barrier is in this state, no player can progress beyond waitAtConsole().

– CONSOLE ALLOW: Four players have arrived in the current round. When the barrier is in this
state, all four waiting players must progress beyond waitAtConsole(), after which the state
reverts to CONSOLE WAIT.

Note that part (but not all) of your work is to ensure that the barriers make the correct state transitions.

Below, where indicated, fill out the variables and methods for the GameBarrier and ConsoleBarrier
objects. Follow the coding standards from class.

Name: UT EID:



page 4 of 19

class GameBarrier {
public:
GameBarrier(); /* You will partially implement this */
~GameBarrier() {}
void waitToPlay(); /* You will implement this */
void donePlaying(); /* You will implement this */

private:
/* this barrier can be in one of three states; note the ’state’ variable */
typedef enum {GAME_NOTREADY, GAME_FILLING, GAME_FILLED} state_t;

Mutex mutex;
state_t state;
/* INSERT MORE BELOW */

};

GameBarrier::GameBarrier() {
state = GAME_NOTREADY:
/* INITIALIZE ANY OTHER VARIABLES. */

}

void
GameBarrier::waitToPlay() {

/* YOU MUST FILL IN THIS FUNCTION */

}

Name: UT EID:



page 5 of 19

void
GameBarrier::donePlaying() {

/* YOU MUST FILL IN THIS FUNCTION */

}

class ConsoleBarrier {
public:
ConsoleBarrier(); /* You will partially implement this */
~ConsoleBarrier() {}
void waitAtConsole(); /* You will implement this */

private:
/* this barrier can be in one of two states; note the ’state’ variable */
typedef enum {CONSOLE_WAIT, CONSOLE_ALLOW} state_t;

Mutex mutex;
state_t state;
/* INSERT MORE BELOW */

};

ConsoleBarrier::ConsoleBarrier() {
state = CONSOLE_WAIT;
/* INITIALIZE ANY OTHER VARIABLES */

}

Name: UT EID:



page 6 of 19

void
ConsoleBarrier::waitAtConsole() {

/* YOU MUST FILL IN THIS FUNCTION */

}

Name: UT EID:



page 7 of 19

4. [3 points] This question is about the correctness of the pseudocode below. The programmer
intends that g() not execute unless f() has executed; the two functions are called by different threads.
Assume POSIX thread semantics (Hansen semantics); that is, the thread package provides the same
guarantees that it did in lab T. Read the code carefully.

int f_ran = FALSE;
Mutex mutex;
Cond cv;

Monitor::t1() { // called by a thread
mutex.acquire();
if (f_ran == FALSE)

cv.wait(&mutex);

g(); /* <-- It is an error if g() executes before f() */
mutex.release();

}

Monitor::t2() { // called by another thread
mutex.acquire();
f();
f_ran = TRUE;

cv.broadcast(&mutex);
mutex.release();

}

Under which conditions is the above pseudocode correct? Circle the BEST answer and then
briefly JUSTIFY your answer.

A The code executes on a single processor.

B The memory model is sequential consistency.

C The threads are user-level threads.

D The system contains only two threads, one that calls t1() and one that calls t2().

E The broadcast() is replaced with a signal().

F The code is correct if conditions A, C, and D all hold simultaneously.

G The code is correct if conditions B and D both hold simultaneously.

H The code is correct if conditions A, C, D, and E all hold simultaneously.

I None of the above.

Justify your answer briefly below:

Name: UT EID:



page 8 of 19

II I/O, Disks, file systems, transactions (20 points total)

5. [4 points] Consider a computer with a processor that operates at 1 GHz (109 cycles/second).
When a network packet arrives, the network card interrupts the CPU, which then processes the packet.
The cost of the following sum to 10,000 cycles: a context switch to the interrupt handler, handling
a packet, and the context switch out of the interrupt handler. A lot of other computers want to talk
to this computer, and for a time, it receives 100,000 packets per second. Assume one interrupt per
packet.

Below, state the total percentage of the processor’s cycles that are spent in interrupt-related code
(meaning the context switching and packet handling). Explain your answer briefly (for example,
by showing your work).

Fill in the blank: during this busy time, the device driver for the network card should not use
interrupts but rather .

6. [3 points] Consider a system that uses transactions to provide atomicity (specifically, all-or-
nothing atomicity) with respect to stable storage. (Other names for stable storage are cell storage and
non-volatile storage.) Recall that this kind of atomicity provides the following: after a system restart,
each transaction will be such that either all of the updates in the transaction will appear to be “done”
or none of the updates in the transaction will appear to be “done”. Here, “done” means “applied to
stable storage”. To provide this type of atomicity, what rule must the transaction manager obey for
each update, with respect to its write-ahead log?

Circle the BEST answer below:

A The transaction manager can apply an update to cell storage only after recording that update in
its write-ahead log.

B The transaction manager can record an update in its write-ahead log only after applying the
update to cell storage.

C The order doesn’t matter: the transaction manager can record an update in the log and in cell
storage in any order, as long as it respects the invariant that COMMIT records are atomic.

Name: UT EID:



page 9 of 19

7. [6 points] Below are three different disk scheduling algorithms and three desirable properties
of a disk scheduling algorithm. Your job will be to mark up a table to indicate which algorithms have
which properties. The three algorithms are:

– First Come First Served (FCFS). The algorithm processes requests in the order that they are
received.

– Shortest Seek Time First (SSTF). The algorithm picks the request with the shortest seek time.
Assume that seek times are predictable, which means that this algorithm can be implemented.

– Elevator Scheduling (Elevator). The algorithm maintains a direction flag and sweeps along
its current direction, picking the request with the shortest seek time. The algorithm switches
direction only if no requests are left in the current direction.

The three desirable properties are:

– Whether the algorithm exploits request locality (exploit locality)

– Whether the algorithm bounds waiting time for all requests (bounded waiting)

– Whether the algorithm provides fairness (fairness). Fairness means that each disk request is
treated equally, regardless of what position on the disk the request is referencing.

Fill in the cells of the table below, using a check mark to indicate that the algorithm has the
desired property. If the algorithm does not have the desired property, leave the table cell blank.

exploit locality bounded waiting fairness

FCFS

SSTF

Elevator scheduling

Name: UT EID:



page 10 of 19

8. [7 points] Consider a file system that has the following description:

– The disk is divided into 1024-byte blocks.

– The beginning of the disk contains an array of 216 inodes, each of which can represent a file or
be unallocated.

– A file has an indexed structure: an inode contains (a) 8 data block pointers, each of which is 4
bytes and each of which points to a disk block and (b) a pointer to ONE indirect block, which is
a disk block that itself contains data block pointers.

– The inode also contains a userid (2 bytes), three time stamps (4 bytes each), protection bits (2
bytes), a reference count (3 bytes), and the size (4 bytes).

– A directory contains a list of (file name, inode number) pairs, where the file name por-
tion is always exactly 14 bytes, including the null terminator (if the file name would otherwise
be fewer than 14 bytes, it is padded to 14 bytes).

Below, state the maximum file size, and explain briefly, for example by showing your work. You
may express your answer as a sum of powers-of-two.

Below, state the maximum number of files in a directory, and explain briefly, for example by
showing your work. Again, you may express your answer as a sum of powers-of-two.

If we wanted to move to LFS (the log-structured file system), which of the items in the descrip-
tion above would we have to modify, and why? Note that we are asking “which items” and
“why”; we are not asking you to describe the exact changes required nor are we asking about
other needed changes.

Name: UT EID:



page 11 of 19

III Networks, RPC, distributed systems (19 points total)

9. [2 points] Some application-layer protocols include a destination field in the application-layer
header. Why?

Circle the BEST answer:

A So the protocol can check that the network layer delivered the packet containing the application’s
message to the correct endpoint.

B Because it is the application layer that makes routing and forwarding decisions.

C Because the network layer uses the application-layer header to route and forward the packet.

D Because the sender’s link layer needs this field to decide which network protocol to use.

The above exercise is borrowed from J. H. Saltzer and M. F. Kaashoek, Principles of Computer System
Design: An Introduction, Morgan Kaufmann, Burlington, MA, 2009. Chapter 7. Available online.

10. [2 points] Ethernet cards have unique addresses built into them. What role do these unique
addresses play in the Internet?

Circle the BEST answer:

A None. They are there for Macintosh compatibility only.

B A portion of the Ethernet address is used as the domain name of the computer using the card.

C They provide routing information for packets destined to non-local subnets.

D They are used as private keys in the Security Layer of the ISO protocol.

E They provide addressing within each subnet for an Internet address resolution protocol.

F They provide secure identification for warranty service.

The above exercise is borrowed from J. H. Saltzer and M. F. Kaashoek, Principles of Computer System
Design: An Introduction, Morgan Kaufmann, Burlington, MA, 2009. Chapter 7. Available online.

11. [3 points] The NFS authors had a goal of transparency. They wanted applications to be unable
to distinguish whether a file system was (a) a remote file system served from an NFS server; or (b) a
typical, local Unix file system. They did not succeed. (In fact, their goal was impossible.)

Below, state precisely one way in which application code can experience different behavior when
interacting with a remote NFS file system versus a local Unix file system. Your answer should
be in terms of what application code sees (rather than in terms of what a global observer sees).

Name: UT EID:



page 12 of 19

12. [6 points] In this question, two computers, A and B, are connected by a network link that
runs at 1 gigabit per second (1 · 109 bits/second). The propagation delay is 20 ms; that is, it takes 20
ms for a bit to travel from A to B or back. Assume that the link does not drop or duplicate packets.
Further assume that processing time at the two endpoints is zero. Last, assume that A sends B 625-byte
packets (the 625 includes all headers, framing, and inter-packet spacing).

What is the maximum number of 625-byte packets per second that A could in principle send
into the wire? Explain your answer briefly (for example, by showing your work). You may make
small approximations if needed.

Now, consider the above link and the following protocol, and assume that all packets are again 625
bytes. In the protocol, A sends 4000 packets into the network as quickly as it can and then waits for
a one-byte ACK from B. Whenever A receives an ACK from B, A immediately sends another 4000
packets into the network. Meanwhile, B ACKs packet 1, packet 4001, packet 8001, etc. That is, B
ACKs every 4000 packets starting with the first one in a burst by A.

What is the long-term throughput of this protocol, expressed as both (a) bits per second and (b)
a percentage of the link’s bandwidth? Explain your answer briefly (for example, by showing
your work). You may make small approximations if needed.

Name: UT EID:



page 13 of 19

13. [3 points] Consider the following statement: “If machines were guaranteed not to crash, we
would not need two-phase commit: the coordinator could, in one phase, decide whether a distributed
transaction would commit, and then instruct the workers to apply their piece of the transaction.”

Is the above statement true or false? Justify your answer briefly below:

14. [3 points] Consider two generals, A and B, who are encamped with their armies as in the Two
Generals Problem. The two generals communicate by messengers that have the following characteris-
tics: a messenger sent by one general always reaches the other general, a messenger never mangles the
messages that it is supposed to deliver, and a messenger delivers exactly one copy of the message that
it is supposed to deliver. However, a messenger occasionally is delayed for up to 24 hours. Assume
that A and B know all of the above but have no way to predict which messengers will be delayed or
when. Assume that A decides the time of the attack. Can A and B successfully coordinate an attack,
as in the Two Generals problem?

If they can successfully coordinate an attack, give a protocol that does so. If they cannot, then
explain why not.

Name: UT EID:



page 14 of 19

IV Guest lectures, readings, and security (23 points total)

15. [3 points] During his lecture, Keith passed around an item of clothing that was decorated with
code. This question asks what the item of clothing was and what the code was.

What was the item of clothing?

What code decorated this clothing item? Circle the BEST answer below:

A Code to root the PlayStation

B Code that would allow anyone to hack the magnetic tickets in Boston’s subways

C Code to measure Ethernet voltage

D Code that would allow anyone to extract data on disks with quarter-track encoding

E Code to descramble DVDs

16. [2 points] Jon Howell’s guest lecture was about binary rewriting. Which of the following tools
did he use during his demonstration?

Circle ALL that apply:

A gdb

B git

C readelf

D ld (the linker)

E strace

17. [2 points] Recall that Jon’s demonstration cheated slightly. Instead of going directly from
hello to the rewritten binary, called hello rewritten, he had an intermediate step. This step was
to create a binary, hello cheating by linking, that contained hello’s main() function together
with two functions: writeizzle() and empty space(). The purpose of writeizzle() was to
add “izzle” to the end of the buffers seen by the write() system call. This question asks about
empty space(): what code did Jon (via his rewriter, rewrite) write into empty space()?

State the one-word name of that functionality (using the technical term for the general mecha-
nism) or else describe the functionality.

Name: UT EID:



page 15 of 19

18. [2 points] This question is about the assigned reading, “Keeping Secrets in Hardware: the
Microsoft XBoxTM Case Study”, by Andrew “bunnie” Huang. Huang successfully attacked the X-box
by doing which of the following?

Circle the BEST answer below:

A Using an electron microscope to read the secret key out of the CPU.

B Replacing the DRAM chips with modified DRAM chips that stored a copy of the secret key in
an off-chip NVRAM.

C Tapping a high-speed bus between ROM and the CPU to extract a secret key and the code in a
secret boot block.

D Mounting a dictionary attack on the Xbox’s password file.

E Modifying the on-disk kernel image to cause a buffer overflow attack in the bootloader, overrid-
ing the hardware-based protection of the secret key.

F Installing read-write entries in the x86-visible page tables, allowing him to overwrite key kernel
data structures.

19. [2 points] One of our assigned readings was “An Access Control Hierarchy for Secure File
Logging”.

What was the central thesis of this paper? Circle the BEST answer below:

A When developers don’t think carefully about their threat model, they can be surprised by attacks
that subvert their abstractions.

B The current Unix approach to access control is incoherent.

C The current Unix approach to access control is coherent, but the coarse-grained notion of privi-
lege in Unix creates many vulnerabilities.

D An attacker who gains access to the kernel’s logging facility can subvert all of the access control
in the file system.

E None of the above.

20. [4 points] These questions concern the hacks to the C compiler that Ken Thompson describes
in “Reflections on Trusting Trust”.

Circle True or False for each item below:

True / False After Thompson’s hacks, the source code for the C compiler, if examined, would
contain a hint that the login program had been bugged.

True / False After Thompson’s hacks, the C compiler binary, if disassembled and examined, would
contain a hint that the login program had been bugged.

Name: UT EID:



page 16 of 19

21. [3 points] Recall that the ping program sends ICMP packets using a raw socket and that the
passwd program changes the user’s password by writing to the /etc/passwd file. For the purpose of
the first two items below, there is no conceptual difference between ping and passwd: what will be
true or false for one will be true or false for the other.

Circle True or False for each item below:

True / False Assuming a normal and bug-free system, one needs to be logged in as the root user to
use ping and passwd successfully.

True / False Assuming a normal and bug-free system, root needs to delegate its privileges (or a
subset of those privileges) to ordinary users for them to use ping and passwd successfully.

True / False To delegate its privileges to ordinary users as they run particular binaries, root sets the
setuid bit on those binaries.

22. [2 points] This question is about mandatory access control. You may recall that Tanenbaum
defined mandatory access controls as follows: under mandatory access controls, the system “ensure[s]
that the stated security policies are enforced . . . in addition to the standard discretionary access controls
[in which individual users determine who may read and write their files]”. Tanenbaum goes on to
describe a phenomenon that undermines mandatory access controls. He prefaces the description with,
“we discuss how information can still leak out even when it has been rigorously proven that such
leakage is mathematically impossible”.

What phenomenon undermines mandatory access controls? Circle the BEST answer:

A Two-factor authentication

B Weak passwords

C A program that has access to privileged information and, as a result of a bug that is not modeled
by the specification, writes it to a world-readable file

D Covert channels

E Buffer overflow attacks on user-level programs

23. [3 points] In his textbook, Tanenbaum says, “We will from time to time look at ‘obsolete’
concepts”, by which he means concepts that are irrelevant under current technology.

Below, briefly and precisely state Tanenbaum’s reason for covering obsolete concepts. Note that
the answer is not “so we can learn from our mistakes”.

Name: UT EID:



page 17 of 19

V OS design, labs, and feedback (13 points total)

24. [7 points] This question asks about adding a feature to JOS: signals. As background, POSIX
signals in Unix systems are a way for the kernel to notify a process (an environment) of some event
of interest. For instance, the kernel delivers the SIGTERM signal to a process when a human user types
Ctrl+C. There are also user-defined signals, such as SIGUSR1 and SIGUSR2.

A process can register signal handlers. For example, if a process registers to handle SIGUSR1, the
kernel invokes the SIGUSR1 handler whenever that signal is generated for the process; this generation
could happen either of the kernel’s volition, or else at the request of another process. If no handler
for SIGUSR1 is registered, the signal has no effect on the environment. (As an aside, if no handler for
SIGTERM is registered, the kernel kills the process.)

Given a signal, the handler may choose to handle it, to exit gracefully, or simply to do nothing (as an
aside, if the signal in question is SIGTERM, doing nothing greatly annoys the human user, who would
start to slam Ctrl+C with increasing force to no avail). If the signal handler chooses not to exit, then
the environment resumes execution where it left off when it received the signal.

Note that a process does not wait to receive a signal (as it does with IPC messages); rather, signal
delivery interrupts the environment. If the environment is not currently executing when the signal is
generated, the kernel queues up the signal for delivery when the environment runs again.

Given the above information, describe how you would implement simple signal support in JOS.
Address the items below briefly; you do not need to write a lot as long as you answer the question.

– What data structures would you need to create or modify, and how?

– Design an interface (perhaps a simple system call) to register functions as signal handlers.

– Discuss how control would flow over the life of a signal, from the time the signal is generated in
the kernel to the time that the environment resumes regular execution.

Thanks to Ivo Popov for this question.

Name: UT EID:



page 18 of 19

25. [2 points] What is the precise mechanism by which JOS ensures that the kernel runs with
interrupts disabled?

State your answer briefly below:

26. [3 points] This question asks you to state one way in which JOS is an exokernel. Recall that an
exokernel is an operating system design in which the kernel itself implements as few abstractions as
possible. That is, the kernel abstracts as little of the hardware as possible, concerning itself only with
the abstractions that it must implement for the purposes of allocating the resources of the machine.

There are several ways to answer this question. You could state something that the JOS kernel exposes
that a normal kernel would not, or something that the JOS kernel intends to be implemented in user
space that a normal kernel would implement itself. (Note that paging to disk, which JOS does not do,
is not a good answer because JOS does not intend for there to be any paging.)

Below, state one way in which JOS is an exokernel (you do not need to justify your answer):

27. [1 points] This is to gather useful feedback while we still have your attention. For both of the
questions below, any answer will receive full credit. A blank answer will earn zero points.

Please list the two topics in this course that you most enjoyed:

Please list the two topics in this course that you least enjoyed:

Name: UT EID:



page 19 of 19

End of Final

Congratulations on being almost done with CS372H!

Enjoy your final projects and then the summer!!

Name: UT EID:


	I Concurrency and other pre-midterm material (25 points total)
	II I/O, Disks, file systems, transactions (20 points total)
	III Networks, RPC, distributed systems (19 points total)
	IV Guest lectures, readings, and security (23 points total)
	V OS design, labs, and feedback (13 points total)

