

New York University
CSCI-UA.0202-003: Operating Systems (Undergrad): Fall 2025

Quiz 8

- Write your full name on both:
 - the bubble sheet in the “Name” field
 - the quiz booklet
- Write your NYU NetID on the quiz booklet and the bubble sheet in the “ID” field
- Use a #2 pencil to fill in your answers on the bubble sheet (preferred, but you can also use a pen)
- This quiz contains 6 questions only. Each question has choices from A to D
- Fill the bubbles completely by darkening the entire circle, as shown in the example
- Only mark answers for questions 1-6. Do not mark any bubbles beyond question 6
- Choose only one answer per question
- Submit your bubble sheet **together with your quiz booklet**

Name:

NetId:

1. Which of the following best explains why file system operations are not naturally atomic regarding disk persistence?
 - (A) Modern hard drives cannot guarantee the atomicity of even a single sector write.
 - (B) File system metadata and data are often spread across multiple distinct sectors or blocks.
 - (C) The operating system disables write-back caching during critical updates, causing fragmentation.
 - (D) Inodes and bitmaps are stored in the same sector, causing race conditions during updates.

2. Which of the following correctly contrasts Redo logging and Copy-on-Write regarding block overwrite?
 - (A) Both techniques rely on overwriting blocks in place.
 - (B) Neither technique ever overwrites blocks in place.
 - (C) Redo logging never overwrites blocks; CoW overwrites blocks in place.
 - (D) Redo logging overwrites blocks in place after checkpointing; CoW never overwrites blocks.

3. How does the NTFS file system utilize a combination of Redo and Undo logging to manage memory?
 - (A) It uses Redo logging for data and Undo logging for metadata.
 - (B) It uses Undo logs to allow early flushing and Redo logs for fast recovery.
 - (C) It uses Undo logging during startup and Redo logging during normal operation.
 - (D) It writes Undo logs to RAM and Redo logs to the disk.

4. Which system call is the primary mechanism used by a debugger to control, observe, and modify a target process on Linux?
 - (A) ioctl
 - (B) setjmp
 - (C) ptrace
 - (D) mmap

5. When a debugger needs to "step over" a software breakpoint it has just hit, what sequence of operations must it perform?
 - (A) Jump over the instruction -> Continue execution.
 - (B) Restore original instruction -> Single-step -> Re-insert breakpoint -> Continue.
 - (C) Write NOP -> Single-step -> Write INT 3 -> Continue.
 - (D) Move the instruction pointer (RIP) forward by one byte -> Continue.

6. If a debugger wants to perform a "backtrace" (stack unwind) on x86-64 without external debug info, which register is most critical to follow the chain of stack frames?
 - (A) %rip
 - (B) %rsp
 - (C) %rbp
 - (D) %rax