

New York University
CSCI-UA.0202-003: Operating Systems (Undergrad): Fall 2025

Quiz 7

- Write your full name on both:
 - the bubble sheet in the “Name” field
 - the quiz booklet
- Write your NYU NetID on the quiz booklet and the bubble sheet in the “ID” field
- Use a #2 pencil to fill in your answers on the bubble sheet (preferred, but you can also use a pen)
- This quiz contains 6 questions only. Each question has choices from A to D
- Fill the bubbles completely by darkening the entire circle, as shown in the example
- Only mark answers for questions 1-6. Do not mark any bubbles beyond question 6
- Choose only one answer per question
- Submit your bubble sheet **together with your quiz booklet**

Name:

NetId:

1. A common observation in file systems is that most files are small, yet most of the disk space is consumed by large files. How does the Unix inode structure accommodate this?
 - (A) It stores all small files in a contiguous array and large files in a linked list.
 - (B) It compresses all small files but leaves large files uncompressed.
 - (C) It requires small files to be padded to the size of a large block.
 - (D) It uses an imbalanced tree with direct pointers for small files and indirect pointers for large files.

2. Which of the following critical pieces of metadata is not stored directly inside a file's inode?
 - (A) The file's name
 - (B) The file's permissions
 - (C) The file's size
 - (D) The count of hard links

3. What is the correct relationship between "sectors" and "blocks"?
 - (A) A sector is the logical allocation unit for the FS; a block is the physical unit on disk.
 - (B) A sector is the smallest unit addressable by the disk hardware; a block is the logical allocation unit used by the file system.
 - (C) Sectors are used to store metadata (inodes), while blocks are used to store file data.
 - (D) The terms "sector" and "block" are interchangeable and refer to the same 512-byte unit.

4. Which of the following is an example of a "special name" that is resolved by the shell, not by the file system itself?
 - (A) .
 - (B) ..
 - (C) /
 - (D) ~

5. What is the fundamental difference between a hard link and a soft link?
 - (A) A hard link can point to a directory, but a soft link cannot.
 - (B) Creating hard links does not create new inode, but creating soft links does.
 - (C) Deleting the original file invalidates a hard link but not a soft link.
 - (D) Hard links work across different file systems, while soft links do not.

6. What advantage did FFS gain by replacing the free block linked-list with a bitmap?
 - (A) A bitmap consumes significantly less memory than a linked list.
 - (B) A bitmap is a persistent data structure, whereas a linked list is volatile.
 - (C) A bitmap makes it much easier and faster to find contiguous free blocks.
 - (D) A bitmap allows for $O(1)$ random access to any free block.