
New York University
CSCI-UA.0202-003: Operating Systems (Undergrad): Fall 2025

Quiz 4

• Write your full name on both:

– the bubble sheet in the “Name” field

– the quiz booklet

• Write your NYU NetID on the quiz booklet and the bubble sheet in the “ID” field

• Use a #2 pencil to fill in your answers on the bubble sheet (preferred, but you can also use a pen)

• This quiz contains 6 questions only. Each question has choices from A to D

• Fill the bubbles completely by darkening the entire circle, as shown in the example

• Only mark answers for questions 1-6. Do not mark any bubbles beyond question 6

• Choose only one answer per question

• Submit your bubble sheet together with your quiz booklet

Name:

NetId:

1. The software bug that caused the Tyler, Texas accidents was a race condition. This
overdose occurred because:
(A) A hardware microswitch failed, sending an ambiguous position message to the
computer.
(B) An 8-bit variable used as a counter overflowed, causing a safety check to be bypassed.
(C) An operator corrected a data entry error for the treatment mode very quickly (within 8
seconds), causing machine parameters to be set incorrectly.
(D) The operator pressed the "P" key to proceed after a malfunction, which was against
operating procedures.

2. For a deadlock to occur, four necessary conditions must be met. Which of the following is
one of these four conditions?
(A) Priority Inversion.
(B) Hold and Wait.
(C) Preemptive Scheduling.
(D) Starvation.

3. The software bug responsible for the second Yakima accident in 1987 involved a shared
variable named Class3 . What was the nature of this flaw?
(A) Class3 was not protected by a lock, allowing two threads to write to it simultaneously.
(B) Class3 was a 1-byte variable that was repeatedly incremented, and on the 256th pass,
it would overflow to zero, causing a critical collimator position check to be skipped.
(C) The operator would manually enter an incorrect value for Class3 in a service mode,
which would persist into treatment mode.
(D) Class3 would be set correctly, but a different task would overwrite its value before the
safety-checking task could read it.

4. What is the primary trade-off when choosing between coarse-grained and fine-grained
locking?
(A) Coarse-grained locking has lower run-time overhead per lock operation, while fine-
grained locking avoids starvation but has higher overhead.
(B) Coarse-grained locking is simpler to implement but limits available parallelism, while
fine-grained locking allows more parallelism but is significantly more complex to design
correctly.
(C) Coarse-grained locking makes deadlocks less likely, while fine-grained locking can
eliminate deadlocks entirely if all locks are acquired in a globally-defined order.
(D) Coarse-grained locking protects larger amounts of data, making it more secure against
data races, while fine-grained locking is less secure due to the increased number of critical
sections.

5. In low-level programming for multi-core systems, what is the purpose of a memory barrier
instruction (like MFENCE)?
(A) To ensure a specific memory write is atomic, preventing it from being "torn" into multiple,
smaller writes by the hardware.
(B) To immediately flush all modified cache lines associated with a process to main memory,
ensuring data persistence in case of a crash.
(C) To prevent the compiler from reordering memory access instructions around the barrier,
serving a similar purpose as the volatile keyword in C/C++.
(D) To enforce an ordering constraint on the CPU, ensuring that memory operations before
the barrier appear to other CPUs to have executed before memory operations after the
barrier.

6. Which of the following scheduling scenarios is ONLY possible on a system using a
preemptive scheduler?
(A) A process issues an I/O request and moves to a waiting state, allowing the next process
in the ready queue to run.
(B) A long-running batch job runs to completion without interruption after it is dispatched to
the CPU.
(C) A running process is moved back to the ready queue by the operating system as a result
of an interrupt, allowing another process to run.
(D) A process executes for a short time and then terminates, allowing the scheduler to
select a new process to run.

