
New York University
CSCI-UA.0202-003: Operating Systems (Undergrad): Fall 2025

Quiz 1

• Write your full name on both:

– the bubble sheet in the “Name” field

– the quiz booklet

• Write your NYU NetID on the quiz booklet and the bubble sheet in the “ID” field

• Use a #2 pencil to fill in your answers on the bubble sheet (preferred, but you can also use a pen)

• This quiz contains 6 questions only. Each question has choices from A to D

• Fill the bubbles completely by darkening the entire circle, as shown in the example

• Only mark answers for questions 1-6. Do not mark any bubbles beyond question 6

• Choose only one answer per question

• Submit your bubble sheet together with your quiz booklet

Name:

NetId:

1. What is a key difference in how registers are managed between a standard function call
(using the call instruction) and a system call (using the syscall instruction) on x86-64?

(A) In a standard function call, the caller must save all registers, whereas in a system call,
the kernel saves all registers.
(B) Standard function calls use a mix of caller-save and callee-save registers, while for a
system call, the kernel is responsible for preserving all registers except for the return value
in %rax .
(C) The return value of a standard function is placed in %rax , while the return value of a
system call is placed on the stack.
(D) The syscall instruction is just a more privileged version of the call instruction, but
they use identical register-saving conventions.

2. In last Tuesday's lecture, we showed how a shell implements output redirection (e.g.,
command > foo). Which sequence of system calls in the child process correctly redirects

its standard output to a file before calling exec() ?

(A) open("/tmp/foo", ...) to get a new file descriptor, then use that descriptor in a
special argument to exec() .
(B) wait(0) to ensure the parent is paused, then open("/tmp/foo", ...) to get file
descriptor 1.
(C) open("/tmp/foo", ...) first, then close(1) to detach the terminal from the
process.
(D) close(1) to free the standard output file descriptor, then open("/tmp/foo", ...) so
the new file is assigned the newly-freed file descriptor 1.

3. Analyze the following C code. What will be printed to the console when it is executed?

(A) Child x = 200 followed by Parent x = 200 .
(B) Child x = 200 followed by Parent x = 100 .
(C) Parent x = 100 followed by Child x = 200 .
(D) The output is non-deterministic because the processes share the variable x .

#include <stdio.h>
#include <unistd.h>
#include <sys/wait.h>

int main() {
 int x = 100;
 pid_t pid = fork();

 if (pid == 0) { // Child process
 x = 200;
 printf("Child x = %d\n", x);
 } else { // Parent process
 wait(NULL); // Wait for child to finish
 printf("Parent x = %d\n", x);
 }
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

4. Consider the following C code. In which memory segment would the string "Hello" and
the memory block pointed to by greeting be located after line 6 executes?

(A) "Hello" is in the Stack; the greeting buffer is in the Heap.
(B) "Hello" is in the Text section; the greeting buffer is in the Heap.
(C) Both "Hello" and the greeting buffer are in the Heap.
(D) Both "Hello" and the greeting buffer are in the Stack.

#include <stdio.h>
#include <stdlib.h>

int main(void) {
 char *greeting = malloc(6);
 strcpy(greeting, "Hello");
 // ...
}

1
2
3
4
5
6
7
8

5. How does the operating system create the illusion that every process has its own private set
of CPU registers?

(A) Each process is assigned to a different physical CPU core that has its own dedicated
registers.
(B) The C compiler generates code to save all registers to the stack before any system call.
(C) Before switching context from one process to another, the OS kernel saves the current
CPU registers to the outgoing process's Process Control Block (PCB) and loads the
registers from the incoming process's PCB.
(D) Processes don't use the physical CPU registers directly; they operate on a virtual set of
registers simulated in memory by the OS.

6. A process with PID 500 has a local variable int count = 10; in its main function. It then
successfully calls an exec() variant to run a new program. Which of the following
statements is true about the process state after the exec() call succeeds?

(A) The PID is changed to a new value, and the memory for the count variable is gone.
(B) The PID remains 500, but the memory space, including the stack frame containing the
count variable, is discarded and replaced.

(C) The PID remains 500, and the new program can access the count variable with its
value of 10.
(D) The exec() call will fail because local variables on the stack cannot exist when a new
program starts.

