CS202 (003): Operating Systems
Trusting Trust

Instructor: Jocelyn Chen

Last time

Buffer Overflow Defenses

Avold unsate tunctions

Stack canary

Separate control stack

Address Space Layout Randomization (ASLR)
Memory writable or executable, not both (WAX)

Control flow integrity (CFl)

Avolding Unsafe Functions

strcpy, strcat, gets, etc.
Plus: Good idea in general
Minus: Requires manual code rewrite

Minus: Non-library functions may be vulnerable

> E.g. user creates their own strcpy
Minus: No guarantee you found everything

Minus: alternatives are also error-prone

Stack Canary

Special value placed before return address
» Secret random value chosen at program start

> String terminator \O’
Gets overwritten during butter overtlow
Check canary betore jJumping to return address

Automatically inserted by compiler

» GCC: -tstack-protector or -tstack-protector-strong

—

Back to Example 2

#include <stdio.h>
#include <string.h>

void foo() {
printf("hello all
exi1t(0);

J

void func(int a, 1in
int ¢ = Oxdeadbee
char buf[4];

strcpy(buf, str);
J

int main(int argc,
func(Oxaaaaaaaa, 0
return 0;

}

FI\Nn");

t b, char *str) {
f;

%ebp

char*xargv) { %eSsp
xbbbbbbbb,argv[1]);

Check canary on ret

argv[1_

Oxbbbbbb

ob

Pxaaaaaaaa

saved ret

saved ebp

canary

Oxdeadbeef

buf[0-3]

Stack Canary

Plus: No code changes required, only recompile
Minus: Performance penalty per return
Minus: Only protects against stack smashing

Minus: Fails if attacker can read memory

Separate Stack

Clang 9 documentation

SafeStack

“SafeStack is an instrumentation pass that protects programs against
attacks lbased on stack buffer overflows, without introducing any
measurable performance overhead. It works by separating the
program stack into two distinct regions: the safe stack and the unsafe
stack. The safe stack stores return addresses, register spills, and
local variables that are always accessed in a safe way, while the
unsafe stack stores everything else. This separation ensures that buffer

overflows on the unsafe stack cannot be used to overwrite anything on
the safe stack.”

WebAssembly has separate stack (kind of)!

Address Space Layout Randomization

e (Change location of stack, heap, code, static vars
e \Norks because attacker needs address of shellcode

e |[ayout must be unknown to attacker
» Randomize on every launch (best)

» Randomize at compile time

e |mplemented on most modern OSes in some form

Address Space Layout Randomization

® Plus: No code changes or recompile required
® Minus: 32-bit arch get limited protection
® Minus: Fails if attacker can read memory

®* Minus: Load-time overhead

®* Minus: No exec img sharing between processes

WAX: write XOR execute

Use MMU to ensure memory cannot be both writeable
and executable at same time

Code segment: executable, not writeable
Stack, heap, static vars: writeable, not executable
Supported by most modern processors

Implemented by modern operating systems

WAX: write XOR execute

® Plus: No code changes or recompile required
® Minus: Requires hardware support

® Minus: Defeated by return-oriented programming

Control Flow Integrity

e (Check destination of every indirect jump
> Function returns
> Function pointers
> Virtual methods
e \Nhat are the valid destinations?
> (Caller of every function known at compile time

> (Class hierarchy limits possible virtual function instances

CFI

Plus: No code changes or hardware support
Plus: Protects against many vulnerabilities
Minus: Performance overhead

Minus: Requires smarter compiler

Minus: Requires having all code available

Ken Thompson

Did you do the reading?

Thompson, 2019

Born Kenneth Lane Thompson
February 4, 1943 (age 81)
New Orleans, Louisiana, U.S.

Alma mater University of California, Berkeley
(B.S., 1965; M.S., 1966)

Known for Multics
Unix
B (programming language)
C (programming language)
Belle (chess machine)

To what extent should one trust a statement that a program is free of Irojan horses?

i sperang syt Perhaps it is more important to trust the people who wrote the software.
Endgame tablebase

Awards IEEE Emanuel R. Piore Award
(1982)!")
Member of the National Academy
of Sciences (1985)[2]
IEEE Richard W. Hamming Medal
(1990)
Computer Pioneer Award (1994)

National Medal of Technology
(1998)

Tsutomu Kanai Award (1999)
Harold Pender Award (2003)
Japan Prize (2011)

Scientific career
Fields Computer science

Institutions Bell Labs
Entrisphere, Inc
Google

https://en.wikipedia.org/wiki/Ken_Thompson

https://cs.nyu.edu/~mwalfish/classes/24sp/ref/trusting-trust.pdf

Forget about what you read for a sec...

MONITOR FOR 6802 1.4 9-14-80 TSC ASSEMBLER PAGE 2
Cc000 ORG ROM+$0000 BEGIN MONITOR
C/) C000 8E 00 70 START LDS #STACK
e
(b) hAhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhhhAhhdhhhhdhdhdhhhhhhkdhdkhhi
—_— * FUNCTION: INITA - Initialize ACIA

Comp| |er * INPUT: none
Java - ;

DESTROYS: acc A

0013 RESETA EQU $00010011

0011 CTLREG EQU $00010001

C003 86 13 INITA LDA A #RESETA RESET ACIA

C005 B7 80 04 STA A ACIA

c008 86 11 LDA A #CTLREG SET 8 BITS AND 2 STOP
COOA B7 80 04 STA A ACIA

CO0OD 7E CO F1 JMP SIGNON GO TO START OF MONITOR

Compiler is a program.
So what does this program written in?

Forget about what you read for a sec...

MONITOR FOR 6802 1.4 9-14-80 TSC ASSEMBLER PAGE 2
co000 ORG ROM+$0000 BEGIN MONITOR
Compller wrltten in CO000 8E 00 70 START LDS #STACK
R .
* FUNCTION: INITA - Initialize ACIA
* INPUT: none
< * QUTPUT: none
9) —> * CALLS: none
- * DESTROYS: acc A
u
_/
0013 RESETA EQU $00010011
Java 0011 CTLREG EQU $00010001
C003 86 13 INITA LDA A #RESETA RESET ACIA
C005 B7 80 04 STA A ACIA
c008 86 11 LDA A #CTLREG SET 8 BITS AND 2 STOP
CO0OA B7 80 04 STA A ACIA
CO0OD 7E CO F1 JMP SIGNON GO TO START OF MONITOR

How does compiler know how to translate different types of language features
(conditionals, loops, classes) into another language?

orget about what you read for a sec...

MONITOR FOR 6802 1.4 9-14-80 TSC ASSEMBLER PAGE 2
coo00 ORG ROM+$0000 BEGIN MONITOR
Compiler written in C000 8E 00 70 START LDS #STACK

e e e e e e e e e ok e e ok e ok e e ok e o ok e ok ok e ok ok ok o e ok e ok ok ke ok ke
* FUNCTION: INITA - Initialize ACIA

* INPUT: none
< * QUTPUT: none
9) —> * CALLS: none
- * DESTROYS: acc A
u
_/
0013 RESETA EQU $00010011
Java 0011 CTLREG EQU %$00010001
C003 86 13 INITA LDA A #RESETA RESET ACIA
C005 B7 80 04 STA A ACIA
Cc008 86 11 LDA A #CTLREG SET 8 BITS AND 2 STOP
COOA B7 80 04 STA A ACIA
COOD 7E CO F1 JMP SIGNON GO TO START OF MONITOR

How can we add new language features to Java?

orget about what you read for a sec...

MONITOR FOR 6802 1.4 9-14-80 TSC ASSEMBLER PAGE 2
Cc000 ORG ROM+$0000 BEGIN MONITOR
A new compiler written in C000 €E 00 70 START IDS #STACK

e e e e e e e e e ok e e ok e ok e e ok e o ok e ok ok e ok ok ok o e ok e ok ok ke ok ke
* FUNCTION: INITA - Initialize ACIA

* INPUT: none
< * QUTPUT: none
S) —> * CALLS: none
- * DESTROYS: acc A
u
_/
i 0013 RESETA EQU $00010011
Java 0011 CTLREG EQU %$00010001
C003 86 13 INITA LDA A #RESETA RESET ACIA
C005 B7 80 04 STA A ACIA
Cc008 86 11 LDA A #CTLREG SET 8 BITS AND 2 STOP
COOA B7 80 04 STA A ACIA
COOD 7E CO F1 JMP SIGNON GO TO START OF MONITOR

How can we add new language features to Java?

Forget about what you read for a sec...

MONITOR FOR 6802 1.4 9-14-80 TSC ASSEMBLER PAGE 2
c000 ORG ROM+$0000 BEGIN MONITOR
Compiler written in C000 8E 00 70 START LDS #STACK

% e % e % e g e g e g ok de e e g e e e gk e kg e ok e ok e ok e ok ke ok e ok ek ke ok

* FUNCTION: INITA - Initialize ACIA
* INPUT: none

* QUTPUT: none

* CALLS: none

* DESTROYS: acc A

—

0013 RESETA EQU $00010011

0011 CTLREG EQU $00010001

C003 86 13 INITA LDA A #RESETA RESET ACIA

C005 B7 80 04 STA A ACIA

c008 86 11 LDA A #CTLREG SET 8 BITS AND 2 STOP
COOA B7 80 04 STA A ACIA

CO0OD 7E CO F1 JMP SIGNON GO TO START OF MONITOR

How can we add new language features to C?

Forget about what you read for a sec...

MONITOR FOR 6802 1.4 9-14-80 TSC ASSEMBLER PAGE 2
C000 ORG ROM+$0000 BEGIN MONITOR
Old compiler written in C000 8E 00 70 START IDS #STACK

% e % e % e g e g e g ok de e e g e e e gk e kg e ok e ok e ok e ok ke ok e ok ek ke ok

* FUNCTION: INITA - Initialize ACIA
* INPUT: none

* QUTPUT: none

* CALLS: none

* DESTROYS: acc A

—

0013 RESETA EQU $00010011

0011 CTLREG EQU $00010001

C003 86 13 INITA LDA A #RESETA RESET ACIA

C005 B7 80 04 STA A ACIA

c008 86 11 LDA A #CTLREG SET 8 BITS AND 2 STOP
COOA B7 80 04 STA A ACIA

CO0OD 7E CO F1 JMP SIGNON GO TO START OF MONITOR

How can we add new language features to C?

Forget about what you read for a sec...

New compiler written in

MONITOR FOR 6802 1.4 9-14-80 TSC ASSEMBLER PAGE 2

C000 ORG ROM+$0000 BEGIN MONITOR
C000 8E 00 70 START LDS #STACK

% e % e % e g e g e g ok de e e g e e e gk e kg e ok e ok e ok e ok ke ok e ok ek ke ok

FUNCTION: INITA - Initialize ACIA
INPUT: none

OUTPUT: none

CALLS: none

DESTROYS: acc A

compiled using the old compiler

—

* * % ¥ *

0013 RESETA EQU $00010011

0011 CTLREG EQU $00010001

C003 86 13 INITA LDA A #RESETA RESET ACIA

C005 B7 80 04 STA A ACIA

c008 86 11 LDA A #CTLREG SET 8 BITS AND 2 STOP
COOA B7 80 04 STA A ACIA

CO0OD 7E CO F1 JMP SIGNON GO TO START OF MONITOR

How can we add new language features to C?

“Bootstrapping”: the technique for producing a self-compiling compiler

Some more context

Earlier version of Unix were distributed with a full set of binaries and
source for those binaries.

't is common for people to make change in one source tile ana
recompile all their programs

How did Thompson add a bug to the login program without leaving
a trace?

Goal

Have no source files hint at the bug, and meanwhile, the bug will
persist across all recompilations

login.c login.c

edit compile
> > login

bug

Anyone looking at login.c will realize something is wrong!

Goal

Have no source files hint at the bug, and meanwhile, the bug will
persist across all recompilations

login.c

loain

I you recompile locally, login will be bug-free again

Goal

Have no source files hint at the bug, and meanwhile, the bug will
persist across all recompilations

compiler.c , compiler.c .
edit compile
> » compiler
bug
login.c
compiler
> login
compiler.c | compiler.c |
edit compiler
> > compiler
bug

Donel

How can Ken figure out this attack?

Selt-reproducing program: a computer program that takes no input and

produces a copy of its own source code as its only output. (Quine)

"yields falsehood when preceded by its quotation" yields falsehood when preceded by its quotation.

https://en.wikipedia.org/wiki/Quine%27s_paradox
https://rosettacode.org/wiki/Quine

Actual attack

: compiler.c :
compiler.c -~ P compile
. - .. > '
> x = {(1) if compiling login, insert bug; compiler
(2) if compiling c compiler, insert x}
login.c
compiler
> login
compiler.c
compiler |
, compiler

Donel

Implications

You can't trust code that you did not totally create yourself!

