
CS202 (003): Operating Systems
Trusting Trust
Instructor: Jocelyn Chen

Last time

Buffer Overflow Defenses

• Avoid unsafe functions

• Stack canary

• Separate control stack

• Address Space Layout Randomization (ASLR)

• Memory writable or executable, not both (W^X)

• Control flow integrity (CFI)

Avoiding Unsafe Functions
• strcpy, strcat, gets, etc.

• Plus: Good idea in general

• Minus: Requires manual code rewrite

• Minus: Non-library functions may be vulnerable
➤ E.g. user creates their own strcpy

• Minus: No guarantee you found everything

• Minus: alternatives are also error-prone

Stack Canary

• Special value placed before return address
➤ Secret random value chosen at program start
➤ String terminator ‘\0’

• Gets overwritten during buffer overflow

• Check canary before jumping to return address

• Automatically inserted by compiler
➤ GCC: -fstack-protector or -fstack-protector-strong

Back to Example 2

#include <stdio.h>
#include <string.h>

void foo() {
 printf("hello all!!\n");
 exit(0);
}

void func(int a, int b, char *str) {
 int c = 0xdeadbeef;
 char buf[4];
 strcpy(buf,str);
}

int main(int argc, char**argv) {
 func(0xaaaaaaaa,0xbbbbbbbb,argv[1]);
 return 0;
}

argv[1]

0xbbbbbbbb

0xaaaaaaaa

saved ret

saved ebp

canary

0xdeadbeef

buf[0-3]

%ebp

%esp

Check canary on ret

Stack Canary

• Plus: No code changes required, only recompile

• Minus: Performance penalty per return

• Minus: Only protects against stack smashing

• Minus: Fails if attacker can read memory

Separate Stack

“SafeStack is an instrumentation pass that protects programs against
attacks based on stack buffer overflows, without introducing any
measurable performance overhead. It works by separating the
program stack into two distinct regions: the safe stack and the unsafe
stack. The safe stack stores return addresses, register spills, and
local variables that are always accessed in a safe way, while the
unsafe stack stores everything else. This separation ensures that buffer
overflows on the unsafe stack cannot be used to overwrite anything on
the safe stack.”

WebAssembly has separate stack (kind of)!

Address Space Layout Randomization

• Change location of stack, heap, code, static vars

• Works because attacker needs address of shellcode

• Layout must be unknown to attacker
➤ Randomize on every launch (best)
➤ Randomize at compile time

• Implemented on most modern OSes in some form

• Plus: No code changes or recompile required

• Minus: 32-bit arch get limited protection

• Minus: Fails if attacker can read memory

• Minus: Load-time overhead

• Minus: No exec img sharing between processes

Address Space Layout Randomization

W^X: write XOR execute

• Use MMU to ensure memory cannot be both writeable
and executable at same time

• Code segment: executable, not writeable

• Stack, heap, static vars: writeable, not executable

• Supported by most modern processors

• Implemented by modern operating systems

W^X: write XOR execute

• Plus: No code changes or recompile required

• Minus: Requires hardware support

• Minus: Defeated by return-oriented programming

• Minus: Does not protect JITed code

Control Flow Integrity

• Check destination of every indirect jump
➤ Function returns
➤ Function pointers
➤ Virtual methods

• What are the valid destinations?
➤ Caller of every function known at compile time
➤ Class hierarchy limits possible virtual function instances

CFI

• Plus: No code changes or hardware support

• Plus: Protects against many vulnerabilities

• Minus: Performance overhead

• Minus: Requires smarter compiler

• Minus: Requires having all code available

Did you do the reading?

https://en.wikipedia.org/wiki/Ken_Thompson

To what extent should one trust a statement that a program is free of Trojan horses?
Perhaps it is more important to trust the people who wrote the software.

https://cs.nyu.edu/~mwalfish/classes/24sp/ref/trusting-trust.pdf

Forget about what you read for a sec…

Compiler

Compiler is a program.
So what does this program written in?

Forget about what you read for a sec…

Compiler written in

How does compiler know how to translate different types of language features
(conditionals, loops, classes) into another language?

Forget about what you read for a sec…

Compiler written in

How can we add new language features to Java?

Forget about what you read for a sec…

A new compiler written in

How can we add new language features to Java?

Forget about what you read for a sec…

Compiler written in

How can we add new language features to C?

Forget about what you read for a sec…

Old compiler written in

How can we add new language features to C?

Forget about what you read for a sec…

How can we add new language features to C?

New compiler written in

compiled using the old compiler

“Bootstrapping”: the technique for producing a self-compiling compiler

Some more context
Earlier version of Unix were distributed with a full set of binaries and

source for those binaries.

It is common for people to make change in one source file and
recompile all their programs

How did Thompson add a bug to the login program without leaving
a trace?

Goal
Have no source files hint at the bug, and meanwhile, the bug will

persist across all recompilations

login.c login.c

bug
login

edit compile

Anyone looking at login.c will realize something is wrong!

Goal
Have no source files hint at the bug, and meanwhile, the bug will

persist across all recompilations

login.c

login

If you recompile locally, login will be bug-free again

Goal
Have no source files hint at the bug, and meanwhile, the bug will

persist across all recompilations

compiler.c compiler.c

bug
compiler

edit compile

Done!

login.c

login
compiler

compiler.c

bug

edit
compiler.c

compiler
compiler

How can Ken figure out this attack?
Self-reproducing program: a computer program that takes no input and

produces a copy of its own source code as its only output. (Quine)

"yields falsehood when preceded by its quotation" yields falsehood when preceded by its quotation.

https://en.wikipedia.org/wiki/Quine%27s_paradox
https://rosettacode.org/wiki/Quine

Actual attack
compiler.c compiler.c

x = {(1) if compiling login, insert bug;

(2) if compiling c compiler, insert x}

compiler
edit compile

login.c

login
compiler

compiler.c

compiler
compiler

Done!

Implications

You can’t trust code that you did not totally create yourself!

