CS202 (003): Stack Smashing

Instructor: Jocelyn Chen

Most of the slides are taken from CSE127 course material by Deian Stefan
(https://cseweb.ucsd.edu/~dstefan/csel127-winter20/slides/2-bufferoverflows.pdf)

https://cseweb.ucsd.edu/~dstefan/cse127-winter20/slides/2-bufferoverflows.pdf

Last Time

When Is a program secure?

e \When i1t does exactly what it should?
> Not more

> Not less

When Is a program secure?

e \When It does exactly what it should?
» Not more

> Not less

e But how do we know what a program Is supposed to
do?

> Somebody tells us? (Do we trust them?)

» We write the code ourselves? (What fraction of the
software you use have you written?)

When Is a program secure?

e [ry 2: When it doesn’t do bad things

e Easier to specify a list of “bad” things:
> Delete or corrupt important files
> (Crash my system
> Send my password over the Internet

> Send threatening email to the professor

When Is a program secure?

But ... what it most of the time the program doesn’t do
bad things, but occasionally it does? Or could?
|s 1t secure?

Weird machines

e Complex systems almost always contain unintended
functionality

» “"Welird machines”

e An exploit 1Is a mechanism by which an attacker
triggers unintended functionality in the system

> Programming of the weird machine

Unintended
. functionality,
ii.e. the "weird

Normal, intended machine"

functionality

7

Expected, valid input Unexpected input

Weird machines

® Security requires understanding not just the intended
but also the unintended functionality present in the
implementation

> Developers’ blind spot

» Attackers’ strength

What Is a software vulnerability?

e A bug in a program that allows an unprivileged user
capabilities that should be denied to them

What Is a software vulnerability?

e A bug in a program that allows an unprivileged user
capabilities that should be denied to them

® [here are a lot of types of vulns, but among the most
classic and important are vulnerabilities that violate
“control flow integrity”

» Why? Lets attacker run code on your computer!

What Is a software vulnerability?

e A bug in a program that allows an unprivileged user
capabilities that should be denied to them

® [here are a lot of types of vulns, but among the most
classic and important are vulnerabilities that violate
“control flow integrity”

» Why? Lets attacker run code on your computer!

e Typically these involve violating assumptions of the
programming language or i1ts run-time

Buffer overflows

e Defn: an anomaly that occurs when a program writes
data beyond the boundary ot a buffer.

e Archetypal software vulnerability
> Ubiquitous in system software (C/C++)
» 0OSes, web servers, web browsers, etc.

> |t your program crashes with memory taults, you
probably have a buffer overflow vulnerability.

How are they introduced?

e No automatic bounds checking in C/C++

e [he problem is made more acute by the fact many C
stdlib functions make 1t easy to go past bounds

e String manipulation functions like gets(), strcpy(), and
strcat() all write to the destination butter until they
encounter a terminating ‘\@’ byte in the input

How are they introduced?

e No automatic bounds checking in C/C++

e [he problem is made more acute by the fact many C
stdlib functions make 1t easy to go past bounds

e String manipulation functions like gets(), strcpy(), and
strcat() all write to the destination butter until they
encounter a terminating ‘\@’ byte in the input

> Whoever is providing the input (often from the other side
of a security boundary) controls how much gets written

Example 1: spot the vuln!

main(argc, argv)
char *argv[];
{
char *sp;
char line[512];
struct sockaddr_in sin;
int i, p[2], pid, status;
FILE *fp;
char *av[4];

i= (sin);
(getpeername(0, &sin, &i) < 9)
fatal(argv[©], "getpeername");
line[@0] = "\0';
gets(line);

Ok

Example 1: spot the vuln!
e \Nhat does gets() do?

1 main(argc, argv)

2 char *argv|];

» How many characters X
] . 4 char *sp;
does it read In? || G EUHETE
6 struct sockaddr_in sin;
7 int i, p[2], pid, status;
. 8 *fp;
> Who decides how much o | chor ~aeial;
input to provide? Qi (sin);
12 (getpeername(0, &sin, &i) < 9)
13 . Fa;al(a:gv[@], "getpeername”);
. . 14 ine[@0] = '\0";
e How largeis line[]? 15 gets(line);

> |Implicit assumption
about Input length

Example 1: spot the vuln!
e \Nhat does gets() do?

1 main(argc, argv)

2 char *argv[];

» How many characters 3 {
] . 4 char *sp;
does it read In? > _schar linels12];
6 struct sockaddr_in sin;
7 int i, p[2], pid, status;
o o *-F ;
> Who decides how much 5 char tavial;
input to provide? - (sin);
12 (getpeername(0, &sin, &i) < 9)
13 . Fa;al(a:gv[@], "getpeername”);
. . 14 ine[@0] = '\0";
* How large is line[]? 15 gets(line);

> |Implicit assumption
about Input length

e \What happens If, say b30,
characters are provided as input?

Morris worm

e T[his fingerd vulnerability was one of

several exploited by the Morris Worm
In 1988

> (Created by Robert Morris
graduate student at Cornell

e One of the first Internet worms

>» Devastating eftect on the Internet at
the time

>» Took over hundreds of computers and
shut down large chunks of the Internet

e Aside: First use of the US CFAA

OK but...

e \Why does overflowing a buftter let you take over a
machine?

e [hat seems crazy no?

Changing perspectives

e Your program manipulates data

e Data manipulates your program

:

s

What we need to know

How C arrays work
How memory Is laid out
How function calls work

How to turn an array overflow into an exploit

How does an array work?

e \What's the abstraction? ali]

al 3]

alo]

al-1]

How does an array work?

e \What's the abstraction? ali]

e \What's the reality?

al3]
> What happens if you try to write

past the of an array in C/C++7

alo]

al-1]

How does an array work?

e \\hat's the abstraction? ali]

e \What's the reality?

al3]
> What happens if you try to write

past the of an array in C/C++7

>» What does the language spec say? al®l

al-1]

How does an array work?

e \\hat's the abstraction? ali]

e \What's the reality?

al3]
> What happens if you try to write

past the of an array in C/C++7

>» What does the language spec say? al®l

>» What happens in most
iImplementations? Al-i]

Linux process memory layout

%eSspP
A

OXFFFFFFFF
0xC0000000

Heap

Data segment

0x40000000
» .data, .bss

brk
Text sement

> Executable code

0x08048000
0x00000000

The Stack

e Stack divided into frames
>» Frame stores locals and args to called tunctions
e Stack pointer points to top of stack
> x86: Stack grows down (from high to low addresses)
> x86: Stored In Y%esp reqister
e Frame pointer points to caller’s stack frame
> Also called base pointer

> x86: Stored Iin %ebp register

Stack frame

to previous
to instruction

— that follows the call

of this function

frame pointer

L

l stack growth

Example O

int foobar(int a, int b, int c¢)

{
int xx = a + 2;
int yy = b + 3;
int zz = ¢ + 4;
int sum = xx + yy + zz;
return xx * yy * zz + sum;
J
int main()
{
return foobar(77, 88, 99);
3

https://godbolt.org/z/3iFhjy

QO o U1 s W N

11
12
13
14

int foobar(int

{

int xx

Il
o))

int yy

int zz

int sum = xXx + yy + zz;

a, int b, int c¢)

+ 2;
b + 3;
c + 4;

Compiled to x36

foobar(int, int,

return xx * yy * zz + sum; 11

int main()

{

return foobar(77,

88, 99); 17

main:

pushl
movl
subl
movl
addl
movl
movl
addl
movl
movl
addl
movl
movl
movl
addl
movl
addl
movl
movl
imull
imull
movl
movl
addl
leave
ret

pushl
movl
pushl
pushl
pushl
call
addl
nop
leave
ret

int):
$ebp
¥esp, %ebp
$16, %esp

8 (%ebp), %eax
$2, %eax

$eax, -4(%ebp)
12 (%ebp), %eax
$3, %eax
$¥eax, -8(%ebp)
16 (%ebp), %eax
$4, %eax
$eax, -12(%ebp)
-4 (%ebp), %edx
-8(%ebp), %eax
$eax, %edx
-12(%ebp), %eax
$edx, %eax
$eax, -16(%ebp)
-4 (%ebp), %eax
-8(%ebp), %eax
-12(%ebp), %eax
$eax, %edx
-16(%ebp), %eax
$edx, %eax

$ebp

$esp, %ebp

$99

$88

$77

foobar(int, int,
$12, %esp

int)

foobar(int, int,
pushl
movl
subl
movl
addl
movl
movl
addl
movl
movl
addl
movl
movl
movl
addl
movl
addl
movl
movl
imull
imull
movl
movl
addl
leave
ret

main:
pushl
movl
pushl
pushl

—> pushl
call
addl
nop
leave
ret

int):
$ebp
$esp, %ebp
$16, %esp
8 (%ebp), %eax
$2, %eax %ebp
$eax, -4(%ebp)
12 (%ebp), %eax
$3, %eax
$eax, -8(%ebp)
16 (%ebp), %eax
$4, %eax
$eax, -12(%ebp)
-4(%ebp), %edx 0/
-8(%ebp), %eax Oesp
$eax, %edx
-12(%ebp), %eax
$edx, %eax
$eax, -16(%ebp)
-4 (%ebp), %eax
-8(%ebp), %eax
-12(%ebp), %eax
$eax, %edx
-16(%ebp), %eax
$edx, %eax

$ebp

$esp, %ebp

$99

$88

$77

foobar(int, int, int)
$12, %esp

$99

$88

$77

OxTff1dod8

foobar(int, int,

main:

pushl
movl
subl
movl
addl
movl
movl
addl
movl
movl
addl
movl
movl
movl
addl
movl
addl
movl
movl
imull
imull
movl
movl
addl
leave
ret

pushl
movl
pushl
pushl
pushl
call
addl
nop
leave
ret

int):

$ebp

$esp, %ebp

$16, %esp

8 (%ebp), %eax
$2, %eax

$eax, -4(%ebp)
12 (%ebp), %eax
$3, %eax

$eax, -8(%ebp)
16 (%ebp), %eax
$4, %eax

$eax, -12(%ebp)
-4 (%ebp), %edx
-8(%ebp), %eax
$eax, %edx
-12(%ebp), %eax
$edx, %eax
$eax, -16(%ebp)
-4 (%ebp), %eax
-8(%ebp), %eax
-12(%ebp), %eax
$eax, %edx
-16(%ebp), %eax
$edx, %eax

$ebp

$esp, %ebp

$99

$88

$77

foobar(int, int,
$12, %esp

int)

%ebp

%eSsp

OxTff1dod8
$99

$88
$77
0x08049bbc

%elp = 0x08049ba7

foobar(int, int,

—>

main:

pushl
movl
subl
movl
addl
movl
movl
addl
movl
movl
addl
movl
movl
movl
addl
movl
addl
movl
movl
imull
imull
movl
movl
addl
leave
ret

pushl
movl
pushl
pushl
pushl
call
addl
nop
leave
ret

int):

$ebp

$esp, %ebp

$16, %esp

8 (%ebp), %eax
$2, %eax

$eax, -4(%ebp)
12 (%ebp), %eax
$3, %eax

$eax, -8(%ebp)
16 (%ebp), %eax
$4, %eax

$eax, -12(%ebp)
-4 (%ebp), %edx
-8(%ebp), %eax
$eax, %edx
-12(%ebp), %eax
$edx, %eax
$eax, -16(%ebp)
-4 (%ebp), %eax
-8(%ebp), %eax
-12(%ebp), %eax
$eax, %edx
-16(%ebp), %eax
$edx, %eax

$ebp

$esp, %ebp

$99

$88

$77

foobar(int, int,
$12, %esp

int)

%ebp

%eSsp

$99

$88

$77

0x08049bbc

OxTff{dod8

OxTff1dod8

foobar(int, int,

main:

pushl
movl
subl
movl
addl
movl
movl
addl
movl
movl
addl
movl
movl
movl
addl
movl
addl
movl
movl
imull
imull
movl
movl
addl
leave
ret

pushl
movl
pushl
pushl
pushl
call
addl
nop
leave
ret

int):

$ebp

$esp, %ebp

$16, %esp

8 (%ebp), %eax
$2, %eax

$eax, -4(%ebp)
12 (%ebp), %eax
$3, %eax

$eax, -8(%ebp)
16 (%ebp), %eax
$4, %eax

$eax, -12(%ebp)
-4 (%ebp), %edx
-8(%ebp), %eax
$eax, %edx
-12(%ebp), %eax
$edx, %eax
$eax, -16(%ebp)
-4 (%ebp), %eax
-8(%ebp), %eax
-12(%ebp), %eax
$eax, %edx
-16(%ebp), %eax
$edx, %eax

$ebp

$esp, %ebp

$99

$88

$77

foobar(int, int,
$12, %esp

int)

%ebp

%eSsp

$99

$88

$77

0x08049bbc

OxTff{dod8

$79

$91

$103

OxTff1dod8

foobar(int, int,

main:

pushl
movl
subl
movl
addl
movl
movl
addl
movl
movl
addl
movl
movl
movl
addl
movl
addl
movl
movl
imull
imull
movl
movl
addl
leave
ret

pushl
movl
pushl
pushl
pushl
call
addl
nop
leave
ret

int):

$ebp

$esp, %ebp

$16, %esp

8 (%ebp), %eax
$2, %eax

$eax, -4(%ebp)
12 (%ebp), %eax
$3, %eax

$eax, -8(%ebp)
16 (%ebp), %eax
$4, %eax

$eax, -12(%ebp)
-4 (%ebp), %edx
-8(%ebp), %eax
$eax, %edx
-12(%ebp), %eax
$edx, %eax
$eax, -16(%ebp)
-4 (%ebp), %eax
-8(%ebp), %eax
-12(%ebp), %eax
$eax, %edx
-16(%ebp), %eax
$edx, %eax

$ebp

$esp, %ebp

$99

$88

$77

foobar(int, int,
$12, %esp

int)

%ebp

%eSsp

$99

$88

$77

0x08049bbc

OxTff{dod8

$79

$91

$103

$293

OxTff1dod8

foobar(int, int,

main:

pushl
movl
subl
movl
addl
movl
movl
addl
movl
movl
addl
movl
movl
movl
addl
movl
addl
movl
movl
imull
imull
movl
movl
addl
leave
ret

pushl
movl
pushl
pushl
pushl
call
addl
nop
leave
ret

int):

$ebp

$esp, %ebp

$16, %esp

8 (%ebp), %eax
$2, %eax

$eax, -4(%ebp)
12 (%ebp), %eax
$3, %eax

$eax, -8(%ebp)
16 (%ebp), %eax
$4, %eax

$eax, -12(%ebp)
-4 (%ebp), %edx
-8(%ebp), %eax
$eax, %edx
-12(%ebp), %eax
$edx, %eax
$eax, -16(%ebp)
-4 (%ebp), %eax
-8(%ebp), %eax
-12(%ebp), %eax
$eax, %edx
-16(%ebp), %eax
$edx, %eax

$ebp

$esp, %ebp

$99

$88

$77

foobar(int, int,
$12, %esp

int)

%ebp

%eSsp

$99

$88

$77

0x08049bbc

OxTff{dod8

$79

$91

$103

$293

OxTff1dod8

foobar(int, int,

main:

pushl
movl
subl
movl
addl
movl
movl
addl
movl
movl
addl
movl
movl
movl
addl
movl
addl
movl
movl
imull
imull
movl
movl
addl
leave
ret

pushl
movl
pushl
pushl
pushl
call
addl
nop
leave
ret

int):

$ebp

$esp, %ebp

$16, %esp

8 (%ebp), %eax
$2, %eax

$eax, -4(%ebp)
12 (%ebp), %eax
$3, %eax

$eax, -8(%ebp)
16 (%ebp), %eax
$4, %eax

$eax, -12(%ebp)
-4 (%ebp), %edx
-8(%ebp), %eax
$eax, %edx
-12(%ebp), %eax
$edx, %eax
$eax, -16(%ebp)
-4 (%ebp), %eax
-8(%ebp), %eax
-12(%ebp), %eax
$eax, %edx
-16(%ebp), %eax
$edx, %eax

$ebp

$esp, %ebp

$99

$88

$77

foobar(int, int,
$12, %esp

int)

%esp, %ebp

$99

$88

$77

0x08049bbc

OxTff{dod8

$79

$91

$103

$293

OxTff1dod8

foobar(int, int,

main:

pushl
movl
subl
movl
addl
movl
movl
addl
movl
movl
addl
movl
movl
movl
addl
movl
addl
movl
movl
imull
imull
movl
movl
addl
leave
ret

pushl
movl
pushl
pushl
pushl
call
addl
nop
leave
ret

int):

$ebp

$esp, %ebp

$16, %esp

8 (%ebp), %eax
$2, %eax

$eax, -4(%ebp)
12 (%ebp), %eax
$3, %eax

$eax, -8(%ebp)
16 (%ebp), %eax
$4, %eax

$eax, -12(%ebp)
-4 (%ebp), %edx
-8(%ebp), %eax
$eax, %edx
-12(%ebp), %eax
$edx, %eax
$eax, -16(%ebp)
-4 (%ebp), %eax
-8(%ebp), %eax
-12(%ebp), %eax
$eax, %edx
-16(%ebp), %eax
$edx, %eax

$ebp

$esp, %ebp

$99

$88

$77

foobar(int, int,
$12, %esp

int)

%ebp

%eSsp

$99

$88

$77

0x08049bbc

OxTff{dod8

$79

$91

$103

$293

OxTff1dod8

foobar(int, int,

main:

pushl
movl
subl
movl
addl
movl
movl
addl
movl
movl
addl
movl
movl
movl
addl
movl
addl
movl
movl
imull
imull
movl
movl
addl
leave
ret

pushl
movl
pushl
pushl
pushl
call
addl
nop
leave
ret

int):

$ebp

$esp, %ebp

$16, %esp

8 (%ebp), %eax
$2, %eax

$eax, -4(%ebp)
12 (%ebp), %eax
$3, %eax

$eax, -8(%ebp)
16 (%ebp), %eax
$4, %eax

$eax, -12(%ebp)
-4 (%ebp), %edx
-8(%ebp), %eax
$eax, %edx
-12(%ebp), %eax
$edx, %eax
$eax, -16(%ebp)
-4 (%ebp), %eax
-8(%ebp), %eax
-12(%ebp), %eax
$eax, %edx
-16(%ebp), %eax
$edx, %eax

$ebp

$esp, %ebp

$99

$88

$77

foobar(int, int,
$12, %esp

int)

%esp, »ebp

OxTff1dod8
$99

$88
$77
0x08049bbc
Oxffffdods
$79
$91
$103
$293

%elp = 0x08049bbc

Example 1

#include <stdio.h>
#include <string.h>

int main(int argc, char**xargv) {

char nice[] = "is nice.";
char name[8];
gets(name);
—p printf("%s %s\n",name,nice);
return 0;
¥

%ebp

%eSsp

argv

argc

saved ret

saved ebp

nicel[4-7]

nice[0-3_

namel[4-7

name[0-3_

If not null terminated can read more of the

stack

Example 2

#include <stdio.h>
#include <string.h>

void foo() {
printf("hello all!!\n");
ex1t(0);

)

void func(int a, int b, char *str) {
int ¢ = Oxdeadbeef;
char buf[4];

strcpy(buf, str);
J

int main(int argc, char*xargv) {
func(@xaaaaaaaa,@xbbbbbbbb,argv[1]);
return 0;

}

Example 2

#include <stdio.h>
#include <string.h>

void foo() {
printf("hello all!!\n");
ex1t(0);

J

void func(int a, int b, char *str) {
int ¢ = Oxdeadbeef; %ebp —
char buf[4];

—p strcpy(buf,str);
)

%esp —

int main(int argc, char*xargv) {
func(@xaaaaaaaa,dxbbbbbbbb,argvl1]);
return 0;

b

Example 2

#include <stdio.h>
#include <string.h>

void foo() {
printf("hello all!!\n");
ex1t(0);

J

void func(int a, int b, char *str) {
int ¢ = Oxdeadbeef; %ebp —
char buf[4];

—p strcpy(buf,str);
)

%esp —

int main(int argc, char**argv) {
func(@xaaaaaaaa,@xbbbbbbbb,argv[1]);
return 0;

}

It first argument to program i1s “AAAAAAAA...”

Example 2

#include <stdio.h>
#include <string.h>

void foo() {
printf("hello all!!\n");
ex1t(0);

J

void func(int a, int b, char *str) {

int ¢ = Oxdeadbeef; %esp, ebp —
char buf[4];

strcpy(buf, str);

—}}

int main(int argc, char**argv) {
func(@xaaaaaaaa,@xbbbbbbbb,argv[1]);
return 0;

}

Example 2

#include <stdio.h>
#include <string.h>

void foo() {
printf("hello all!!\n");
ex1t(0);

J

void func(int a, int b, char *str) {
int ¢ = Oxdeadbeef; %esp —
char buf[4];

strcpy(buf, str);

—}}

int main(int argc, char**argv) {
func(@xaaaaaaaa,@xbbbbbbbb,argv[1]);
return 0;

}

%ebp = 0x41414141

Example 2

#include <stdio.h>
#include <string.h>

void foo() {
printf("hello all!!\n");
ex1t(0);

J

void func(int a, int b, char *str) {
int ¢ = Oxdeadbeef; %esp —
char buf[4];

strcpy(buf, str);

—}}

int main(int argc, char**argv) {
func(@xaaaaaaaa,@xbbbbbbbb,argv[1]);
return 0;

}

%ebp
%el1p

Ox4141414
Ox4141414

Stack Buffer Overflow

* |f source string of strcpy controlled by attacker (and
destination is on the stack)

> Attacker gets to control where the function returns by
overwriting the return address

> Attacker gets to transfer control to anywhere!

e \Where do you jump?

Existing functions

#include <stdio.h>
#include <string.h>

—3p Vvoid foo() {
printf("hello all!l!l\n");

ex1t(0);
¥

void func(int a, int b, char *str) {
int ¢ = Oxdeadbeef; %esp —
char buf[4];

strcpy(buf, str);

}

int main(int argc, char**argv) {
func(@xaaaaaaaa,@xbbbbbbbb,argv[1]);
return 0;

}

%ebp
%el1p

0x41414141
0x08049b95

Let’'s look at this in GDB (w/ GEF)

Better Hijacking Control

e Jump to attacker-supplied code

e \Where? We have control of
string!

> Put code In string

> Jump to start of string

%ebp

%eSsp

argv[1._

Oxbbbbbb

ob

Pxaaaaaaaa

saved ret

saved ebp

Oxdeadbeef

buf[0-3]

Better Hijacking Control

e Jump to attacker-supplied code <

e \Where? We have control of
string! %ebp —

> Put code In string %esp —

> Jump to start of string

Shellcode

®* Shellcode: small code fragment that receives initial
control in an control flow hijack exploit

> Control flow hijack: taking control of instruction ptr
e FEarliest attacks used shellcode to exec a shell

» Target a setuid root program, gives you root shell

Shellcode

volid main() {
char *name[2];

name[0] "/bin/sh";
name|[1] NULL;
execve(name[0], name, NULL);

Shellcode

® [here are some restrictions
> 1. Shellcode cannot contain null characters \O’
> \Why not?
> Fix: use different instructions and NOPs to eliminate \0

> 2. If payload is via gets() must also avoid line-breaks

How do we make this robust?

e 3. Exact address of shellcode <

start not always easy to guess

%ebp —
> Miss? SEGFAULT!

e Fix: NOP-sled resp

Buffer Overflow Defenses

Avold unsate tunctions

Stack canary

Separate control stack

Address Space Layout Randomization (ASLR)
Memory writable or executable, not both (WAX)

Control flow integrity (CFl)

Avolding Unsafe Functions

strcpy, strcat, gets, etc.
Plus: Good idea in general
Minus: Requires manual code rewrite

Minus: Non-library functions may be vulnerable

> E.g. user creates their own strcpy
Minus: No guarantee you found everything

Minus: alternatives are also error-prone

Stack Canary

Special value placed before return address
» Secret random value chosen at program start

> String terminator \O’
Gets overwritten during butter overtlow
Check canary betore jJumping to return address

Automatically inserted by compiler

» GCC: -tstack-protector or -tstack-protector-strong

—

Back to Example 2

#include <stdio.h>
#include <string.h>

void foo() {
printf("hello all
exi1t(0);

J

void func(int a, 1in
int ¢ = Oxdeadbee
char buf[4];

strcpy(buf, str);
J

int main(int argc,
func(Oxaaaaaaaa, 0
return 0;

}

FI\Nn");

t b, char *str) {
f;

%ebp

char*xargv) { %eSsp
xbbbbbbbb,argv[1]);

Check canary on ret

argv[1_

Oxbbbbbb

ob

Pxaaaaaaaa

saved ret

saved ebp

canary

Oxdeadbeef

buf[0-3]

Stack Canary

Plus: No code changes required, only recompile
Minus: Performance penalty per return
Minus: Only protects against stack smashing

Minus: Fails if attacker can read memory

Separate Stack

Clang 9 documentation

SafeStack

“SafeStack is an instrumentation pass that protects programs against
attacks lbased on stack buffer overflows, without introducing any
measurable performance overhead. It works by separating the
program stack into two distinct regions: the safe stack and the unsafe
stack. The safe stack stores return addresses, register spills, and
local variables that are always accessed in a safe way, while the
unsafe stack stores everything else. This separation ensures that buffer

overflows on the unsafe stack cannot be used to overwrite anything on
the safe stack.”

WebAssembly has separate stack (kind of)!

Address Space Layout Randomization

e (Change location of stack, heap, code, static vars
e \Norks because attacker needs address of shellcode

e |[ayout must be unknown to attacker
» Randomize on every launch (best)

» Randomize at compile time

e |mplemented on most modern OSes in some form

Address Space Layout Randomization

® Plus: No code changes or recompile required
® Minus: 32-bit arch get limited protection
® Minus: Fails if attacker can read memory

®* Minus: Load-time overhead

®* Minus: No exec img sharing between processes

WAX: write XOR execute

Use MMU to ensure memory cannot be both writeable
and executable at same time

Code segment: executable, not writeable
Stack, heap, static vars: writeable, not executable
Supported by most modern processors

Implemented by modern operating systems

WAX: write XOR execute

® Plus: No code changes or recompile required
® Minus: Requires hardware support

® Minus: Defeated by return-oriented programming

Control Flow Integrity

e (Check destination of every indirect jump
> Function returns
> Function pointers
> Virtual methods
e \Nhat are the valid destinations?
> (Caller of every function known at compile time

> (Class hierarchy limits possible virtual function instances

CFI

Plus: No code changes or hardware support
Plus: Protects against many vulnerabilities
Minus: Performance overhead

Minus: Requires smarter compiler

Minus: Requires having all code available

