
CS202 (003): Stack Smashing
Instructor: Jocelyn Chen

Most of the slides are taken from CSE127 course material by Deian Stefan

(https://cseweb.ucsd.edu/~dstefan/cse127-winter20/slides/2-bufferoverflows.pdf)

https://cseweb.ucsd.edu/~dstefan/cse127-winter20/slides/2-bufferoverflows.pdf

Last Time

When is a program secure?

• When it does exactly what it should?

➤ Not more

➤ Not less

• But how do we know what a program is supposed to
do?

➤ Somebody tells us? (Do we trust them?)

➤ We write the code ourselves? (What fraction of the
software you use have you written?)

When is a program secure?

• When it does exactly what it should?

➤ Not more

➤ Not less

• But how do we know what a program is supposed to
do?

➤ Somebody tells us? (Do we trust them?)

➤ We write the code ourselves? (What fraction of the
software you use have you written?)

When is a program secure?

• Try 2: When it doesn’t do bad things

• Easier to specify a list of “bad” things:
➤ Delete or corrupt important files
➤ Crash my system
➤ Send my password over the Internet
➤ Send threatening email to the professor

When is a program secure?

But … what if most of the time the program doesn’t do
bad things, but occasionally it does? Or could? 
Is it secure?

Weird machines

• Complex systems almost always contain unintended
functionality

➤ “Weird machines”

• An exploit is a mechanism by which an attacker
triggers unintended functionality in the system

➤ Programming of the weird machine 
 

https://en.wikipedia.org/wiki/Weird_machine#/media/File:Weird_machine.png

Weird machines

• Security requires understanding not just the intended
but also the unintended functionality present in the
implementation
➤ Developers’ blind spot
➤ Attackers’ strength

What is a software vulnerability?

• A bug in a program that allows an unprivileged user
capabilities that should be denied to them

What is a software vulnerability?

• A bug in a program that allows an unprivileged user
capabilities that should be denied to them

• There are a lot of types of vulns, but among the most
classic and important are vulnerabilities that violate
“control flow integrity”
➤ Why? Lets attacker run code on your computer!

What is a software vulnerability?

• A bug in a program that allows an unprivileged user
capabilities that should be denied to them

• There are a lot of types of vulns, but among the most
classic and important are vulnerabilities that violate
“control flow integrity”
➤ Why? Lets attacker run code on your computer!

• Typically these involve violating assumptions of the
programming language or its run-time

Buffer overflows

• Defn: an anomaly that occurs when a program writes
data beyond the boundary of a buffer.

• Archetypal software vulnerability
➤ Ubiquitous in system software (C/C++)

➤ OSes, web servers, web browsers, etc.

➤ If your program crashes with memory faults, you
probably have a buffer overflow vulnerability.

How are they introduced?

• No automatic bounds checking in C/C++

• The problem is made more acute by the fact many C
stdlib functions make it easy to go past bounds

• String manipulation functions like gets(), strcpy(), and
strcat() all write to the destination buffer until they
encounter a terminating ‘\0’ byte in the input

How are they introduced?

• No automatic bounds checking in C/C++

• The problem is made more acute by the fact many C
stdlib functions make it easy to go past bounds

• String manipulation functions like gets(), strcpy(), and
strcat() all write to the destination buffer until they
encounter a terminating ‘\0’ byte in the input
➤ Whoever is providing the input (often from the other side

of a security boundary) controls how much gets written

Example 1: spot the vuln!

http://minnie.tuhs.org/cgi-bin/utree.pl?file=4.3BSD/usr/src/etc/fingerd.c

• What does gets() do?
➤ How many characters  

does it read in?
➤ Who decides how much  

input to provide?

• How large is line[]?
➤ Implicit assumption 

about input length

Example 1: spot the vuln!

http://minnie.tuhs.org/cgi-bin/utree.pl?file=4.3BSD/usr/src/etc/fingerd.c

• What does gets() do?
➤ How many characters  

does it read in?
➤ Who decides how much  

input to provide?

• How large is line[]?
➤ Implicit assumption 

about input length

• What happens if, say 536,
characters are provided as input?

Example 1: spot the vuln!

http://minnie.tuhs.org/cgi-bin/utree.pl?file=4.3BSD/usr/src/etc/fingerd.c

Morris worm
• This fingerd vulnerability was one of

several exploited by the Morris Worm
in 1988

➤ Created by Robert Morris  
graduate student at Cornell

• One of the first Internet worms

➤ Devastating effect on the Internet at
the time

➤ Took over hundreds of computers and
shut down large chunks of the Internet

• Aside: First use of the US CFAA
https://en.wikipedia.org/wiki/Morris_worm

OK but…

• Why does overflowing a buffer let you take over a
machine?

• That seems crazy no?

Changing perspectives

• Your program manipulates data

• Data manipulates your program  
 
 
 

What we need to know

• How C arrays work

• How memory is laid out

• How function calls work

• How to turn an array overflow into an exploit

How does an array work?

• What's the abstraction?

a[3]

a[0]

a[-i]

a[i]

How does an array work?

• What's the abstraction?

• What’s the reality?
➤ What happens if you try to write

past the of an array in C/C++?

a[3]

a[0]

a[-i]

a[i]

How does an array work?

• What's the abstraction?

• What’s the reality?
➤ What happens if you try to write

past the of an array in C/C++?
➤ What does the language spec say?

a[3]

a[0]

a[-i]

a[i]

How does an array work?

• What's the abstraction?

• What’s the reality?
➤ What happens if you try to write

past the of an array in C/C++?
➤ What does the language spec say?
➤ What happens in most

implementations?

a[3]

a[0]

a[-i]

a[i]

• Stack

• Heap

• Data segment

➤ .data, .bss

• Text sement

➤ Executable code

Linux process memory layout

kernel
user stack

shared libs

runtime heap
static data
segment

text segment
unused

%esp

brk

0xC0000000

0x40000000

0x08048000

0x00000000

0xFFFFFFFF

The Stack
• Stack divided into frames

➤ Frame stores locals and args to called functions

• Stack pointer points to top of stack

➤ x86: Stack grows down (from high to low addresses)

➤ x86: Stored in %esp register

• Frame pointer points to caller’s stack frame

➤ Also called base pointer

➤ x86: Stored in %ebp register

Stack frame

arguments

return address

stack frame pointer

local variables

to previous
frame pointer

stack growth

to instruction  
that follows the call
of this function

Example 0

int foobar(int a, int b, int c)
{
 int xx = a + 2;
 int yy = b + 3;
 int zz = c + 4;
 int sum = xx + yy + zz;

 return xx * yy * zz + sum;
}

int main()
{
 return foobar(77, 88, 99);
}

https://godbolt.org/z/3iFhjy
https://godbolt.org/z/3iFhjy

Compiled to x86

$99

$88

$77
%esp

%ebp 0xffffd0d8

$99

$88

$77

0x08049bbc
%esp

%ebp 0xffffd0d8

%eip = 0x08049ba7

$99

$88

$77

0xffffd0d8

0xffffd0d8

0x08049bbc

%ebp

%esp

$99

$88

$77

0x08049bbc

0xffffd0d8

$79

$91

$103

0xffffd0d8

%ebp

%esp

$99

$88

$77

0x08049bbc

0xffffd0d8

$79

$91

$103

$293

0xffffd0d8

%ebp

%esp

$99

$88

$77

0x08049bbc

0xffffd0d8

$79

$91

$103

$293

0xffffd0d8

%ebp

%esp

$99

$88

$77

0x08049bbc

0xffffd0d8

$79

$91

$103

$293

0xffffd0d8

%ebp%esp,

$99

$88

$77

0x08049bbc

0xffffd0d8

$79

$91

$103

$293

0xffffd0d8%ebp

%esp

$99

$88

$77

0x08049bbc

0xffffd0d8

$79

$91

$103

$293

0xffffd0d8%ebp%esp,

%eip = 0x08049bbc

Example 1

#include <stdio.h>
#include <string.h>

int main(int argc, char**argv) {
 char nice[] = "is nice.";
 char name[8];
 gets(name);
 printf("%s %s\n",name,nice);
 return 0;
}

argv

argc

saved ret

saved ebp

nice[4-7]

nice[0-3]

name[4-7]

name[0-3]

%ebp

%esp

If not null terminated can read more of the stack

Example 2

#include <stdio.h>
#include <string.h>

void foo() {
 printf("hello all!!\n");
 exit(0);
}

void func(int a, int b, char *str) {
 int c = 0xdeadbeef;
 char buf[4];
 strcpy(buf,str);
}

int main(int argc, char**argv) {
 func(0xaaaaaaaa,0xbbbbbbbb,argv[1]);
 return 0;
}

Example 2

#include <stdio.h>
#include <string.h>

void foo() {
 printf("hello all!!\n");
 exit(0);
}

void func(int a, int b, char *str) {
 int c = 0xdeadbeef;
 char buf[4];
 strcpy(buf,str);
}

int main(int argc, char**argv) {
 func(0xaaaaaaaa,0xbbbbbbbb,argv[1]);
 return 0;
}

argv[1]

0xbbbbbbbb

0xaaaaaaaa

saved ret

saved ebp

0xdeadbeef

buf[0-3]

%ebp

%esp

Example 2

#include <stdio.h>
#include <string.h>

void foo() {
 printf("hello all!!\n");
 exit(0);
}

void func(int a, int b, char *str) {
 int c = 0xdeadbeef;
 char buf[4];
 strcpy(buf,str);
}

int main(int argc, char**argv) {
 func(0xaaaaaaaa,0xbbbbbbbb,argv[1]);
 return 0;
}

If first argument to program is “AAAAAAAA…”

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

%ebp

%esp

Example 2

#include <stdio.h>
#include <string.h>

void foo() {
 printf("hello all!!\n");
 exit(0);
}

void func(int a, int b, char *str) {
 int c = 0xdeadbeef;
 char buf[4];
 strcpy(buf,str);
}

int main(int argc, char**argv) {
 func(0xaaaaaaaa,0xbbbbbbbb,argv[1]);
 return 0;
}

%ebp%esp,

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

Example 2

#include <stdio.h>
#include <string.h>

void foo() {
 printf("hello all!!\n");
 exit(0);
}

void func(int a, int b, char *str) {
 int c = 0xdeadbeef;
 char buf[4];
 strcpy(buf,str);
}

int main(int argc, char**argv) {
 func(0xaaaaaaaa,0xbbbbbbbb,argv[1]);
 return 0;
}

%esp

%ebp = 0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

Example 2

#include <stdio.h>
#include <string.h>

void foo() {
 printf("hello all!!\n");
 exit(0);
}

void func(int a, int b, char *str) {
 int c = 0xdeadbeef;
 char buf[4];
 strcpy(buf,str);
}

int main(int argc, char**argv) {
 func(0xaaaaaaaa,0xbbbbbbbb,argv[1]);
 return 0;
}

%eip = 0x41414141

%esp

%ebp = 0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

0x41414141

Stack Buffer Overflow

• If source string of strcpy controlled by attacker (and
destination is on the stack)
➤ Attacker gets to control where the function returns by

overwriting the return address
➤ Attacker gets to transfer control to anywhere!

• Where do you jump?

Existing functions

#include <stdio.h>
#include <string.h>

void foo() {
 printf("hello all!!\n");
 exit(0);
}

void func(int a, int b, char *str) {
 int c = 0xdeadbeef;
 char buf[4];
 strcpy(buf,str);
}

int main(int argc, char**argv) {
 func(0xaaaaaaaa,0xbbbbbbbb,argv[1]);
 return 0;
}

%eip = 0x08049b95

%esp

%ebp = 0x41414141

0x41414141

0x41414141

0x41414141

0x08049b95

0x41414141

0x41414141

0x41414141

Let’s look at this in GDB (w/ GEF)

Better Hijacking Control

• Jump to attacker-supplied code

• Where? We have control of
string!
➤ Put code in string
➤ Jump to start of string

argv[1]

0xbbbbbbbb

0xaaaaaaaa

saved ret

saved ebp

0xdeadbeef

buf[0-3]

%ebp

%esp

Better Hijacking Control

• Jump to attacker-supplied code

• Where? We have control of
string!
➤ Put code in string
➤ Jump to start of string

shellcode

hijacked ret

%ebp

%esp

Shellcode

• Shellcode: small code fragment that receives initial
control in an control flow hijack exploit

➤ Control flow hijack: taking control of instruction ptr

• Earliest attacks used shellcode to exec a shell

➤ Target a setuid root program, gives you root shell

Shellcode

void main() {
 char *name[2];

 name[0] = "/bin/sh";
 name[1] = NULL;
 execve(name[0], name, NULL);
}

Shellcode
• There are some restrictions

➤ 1. Shellcode cannot contain null characters ‘\0’

➤ Why not?

➤ Fix: use different instructions and NOPs to eliminate \0

➤ 2. If payload is via gets() must also avoid line-breaks  
 
 
 

How do we make this robust?

• 3. Exact address of shellcode
start not always easy to guess

➤ Miss? SEGFAULT!

• Fix: NOP-sled

shellcode

~&shellcode[0]

%ebp

%esp

NOP-sled

Buffer Overflow Defenses

• Avoid unsafe functions

• Stack canary

• Separate control stack

• Address Space Layout Randomization (ASLR)

• Memory writable or executable, not both (W^X)

• Control flow integrity (CFI)

Avoiding Unsafe Functions
• strcpy, strcat, gets, etc.

• Plus: Good idea in general

• Minus: Requires manual code rewrite

• Minus: Non-library functions may be vulnerable
➤ E.g. user creates their own strcpy

• Minus: No guarantee you found everything

• Minus: alternatives are also error-prone

Stack Canary

• Special value placed before return address
➤ Secret random value chosen at program start
➤ String terminator ‘\0’

• Gets overwritten during buffer overflow

• Check canary before jumping to return address

• Automatically inserted by compiler
➤ GCC: -fstack-protector or -fstack-protector-strong

Back to Example 2

#include <stdio.h>
#include <string.h>

void foo() {
 printf("hello all!!\n");
 exit(0);
}

void func(int a, int b, char *str) {
 int c = 0xdeadbeef;
 char buf[4];
 strcpy(buf,str);
}

int main(int argc, char**argv) {
 func(0xaaaaaaaa,0xbbbbbbbb,argv[1]);
 return 0;
}

argv[1]

0xbbbbbbbb

0xaaaaaaaa

saved ret

saved ebp

canary

0xdeadbeef

buf[0-3]

%ebp

%esp

Check canary on ret

Stack Canary

• Plus: No code changes required, only recompile

• Minus: Performance penalty per return

• Minus: Only protects against stack smashing

• Minus: Fails if attacker can read memory

Separate Stack

“SafeStack is an instrumentation pass that protects programs against
attacks based on stack buffer overflows, without introducing any
measurable performance overhead. It works by separating the
program stack into two distinct regions: the safe stack and the unsafe
stack. The safe stack stores return addresses, register spills, and
local variables that are always accessed in a safe way, while the
unsafe stack stores everything else. This separation ensures that buffer
overflows on the unsafe stack cannot be used to overwrite anything on
the safe stack.”

WebAssembly has separate stack (kind of)!

Address Space Layout Randomization

• Change location of stack, heap, code, static vars

• Works because attacker needs address of shellcode

• Layout must be unknown to attacker
➤ Randomize on every launch (best)
➤ Randomize at compile time

• Implemented on most modern OSes in some form

• Plus: No code changes or recompile required

• Minus: 32-bit arch get limited protection

• Minus: Fails if attacker can read memory

• Minus: Load-time overhead

• Minus: No exec img sharing between processes

Address Space Layout Randomization

W^X: write XOR execute

• Use MMU to ensure memory cannot be both writeable
and executable at same time

• Code segment: executable, not writeable

• Stack, heap, static vars: writeable, not executable

• Supported by most modern processors

• Implemented by modern operating systems

W^X: write XOR execute

• Plus: No code changes or recompile required

• Minus: Requires hardware support

• Minus: Defeated by return-oriented programming

• Minus: Does not protect JITed code

Control Flow Integrity

• Check destination of every indirect jump
➤ Function returns
➤ Function pointers
➤ Virtual methods

• What are the valid destinations?
➤ Caller of every function known at compile time
➤ Class hierarchy limits possible virtual function instances

CFI

• Plus: No code changes or hardware support

• Plus: Protects against many vulnerabilities

• Minus: Performance overhead

• Minus: Requires smarter compiler

• Minus: Requires having all code available

