
CS202 (003): Operating Systems 
File System III, continued

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202



Last Time



Journaling (borrowed from how transitions are implemented in databases)

Goal: Reduce write/space overhead without violating atomicity

Treat file system operations as transactions:  
after a crash, failure recovery ensures  

1. committed file system operations are reflected in on-disk data structures 
2. uncommitted file system operations are not visible after crash recovery

Record enough information to finish applying committed operations (redo operations) 
and/or roll-back uncommitted operations (undo operations) 

This information is stored in a redo/undo log



Journaling

Commit point: the point at which there is no turning back 

first step commit point last step
for example

can back out cannot back out

… …

What is the commit point in copy-on-write?



Journaling — redo logging (used by ext3 & ext4)

FS computes what would change due to a operation

FS computes where in the log it can write this transaction, and 
writes a transactions begin record . Do not have to wait on this.
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Figure 4: Redo logging in a filesystem
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FS writes a record(s) with all the changes it computed in step 1.  
FS must wait for changes and TxnBegin to finish written to the disk

Once step 3 finishes, the system writes a transaction end record

Once the TxnEnd has been written, the FS asynchronously performs 
the actual FS changes “checkpointing”



Journaling — crash recovery of redo logging

FS starts scanning from the beginning of the log

Every time it finds a TxnBegin entry, it looks for the corresponding 
TxnEnd entry

If matching (TxnBegin, TxnEnd) found, FS checkpoints the changes 

Recovery is completed once the entire log is scanned

High-level idea:   
read through the logs, find committed operations and apply them 

How to check whether ops are committed? Look at TxnBegin and TxnEnd! 
It is safe to apply the same redo log multiple times

What to log? 

Logging can double the amount of data written to the disk 
Ext3 and 4 allows user to choose what to log 

Default: metadata only (assuming people are fine with data 
loss after crash) 

Can change to force data to be logged w/ metadata



Journaling — undo logging (Not used in isolation by any file system)

Write a TxBegin entry to the log

For each op, write instructions for how to undo any updates. 
Changes to the block can be made right after writes finishes

Wait for in-place changes to finish for all blocks

Write a TxnEnd entry into the block

all changes have been written to the actual FS data structures



Journaling — crash recovery from undo logging

Scan to find all uncommitted transactions from the end of the log

For each such transaction, check whether undo entry is valid 
(checksum)

Apply all valid undo entries found

disk back to a consistent state 

Disadvantages

Benefits
Changes can be checkpoints to disk as soon as the undo log has been updated 

— useful when the amount of buffer cache is low 

A transaction is not committed until all dirty blocks have been flushed to their in-place targets



Redo logging vs. Undo logging

Disadvantages

Benefits
Changes can be checkpoints to disk as soon as the undo log has been updated 

— useful when the amount of buffer cache is low 

A transaction is not committed until all dirty blocks have been flushed to their in-place targets

Disadvantages

Benefits
A transaction can commit without all in-place updates (writes to actual disk locations) being completed 

— useful when in-place updates might be scattered all over the disk


A transaction's dirty blocks need to be kept in the buffer-cache until the transaction commits 
and all of the associated journal entries have been flushed to disk. 


This might increase memory pressure.



Combining Redo/Undo Logging (Done by NFTS)

Goal: allow dirty buffers to be flushed as soon as their associated journal 
entries are written. Transactions are committed as soon as logging is done 

Reduce memory pressure when necessary, and have greater flexibility when scheduling disk writes

FS computes what would change due to a operation

FS computes where in the log it can write this transaction, and 
writes a transactions begin record . Do not have to wait on this.

FS writes both a redo log entry and an undo log entry for each of the 
changes computed in Step 1.  

In-place changes can be made once the log information is written.

Once TxnBegin and logs are written, write a TxnEnd entry

Once the TxnEnd has been written, the FS asynchronously performs 
the actual FS changes



Journaling — crash recovery from redo+undo logging

Scan to find all uncommitted transactions from the end of the log

For each such transaction, check whether undo entry is valid 
(checksum)

Apply all valid undo entries found

disk back to a consistent state 

FS starts scanning from the beginning of the log

Every time it finds a TxnBegin entry, it looks for the corresponding 
TxnEnd entry

If matching (TxnBegin, TxnEnd) found, FS checkpoints the changes 

Recovery is completed once the entire log is scanned

Step 1: Redo pass Step 2: Undo pass

Designed for a time when the same Operating System ran on machines with very little 
memory (8-32MB), and also on "big-iron" servers with lots of memory (1GB+).  

            This was an attempt to get the best of both worlds. 



CS202 (003): Operating Systems 
How Debugger Works

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202



What is a debugger?
A process that has some control over another process

“target”

“process being debugged”



Why is debugger cool?
The high-level functionality is invaluable to software developers

Set breakpoints  
(break) 

Pause a process  
(attach) 

Single step through the process  
(stepi is one assembly instruction, step is one line of C code) 

Continue process execution from the paused points  
(continue) 

Generate a stack trace  
(backtrace) 

Read and modify values of variables, which might be on the stack, heap or data segment  
(x or print to read, set $varname to modify) 

Read and modify program code (the TEXT area) 
(disassemble to read) 

Read and modify program registers  
(info registers and print to read, and set $regname to write) 

Modify parameters and return values for system calls  
(call and catch syscall) 

Set watchpoints  
(watch, awatch and rwatch)



Why is debugger cool?
We have talked about that “Process are isolated from each other” 

How can debugger access the target’s memory?

How can debugger stop target’s execution at specific address?

How can debugger “single-step” another process?



Why is debugger cool?
Debugger requires a lot of effort to make it work!

Stack frames Virtual memory Interrupts Signals

Operating system and CPU



Attach and controlling a process

void launch_attached(const char* path,	
                    char* const argv[]) {	
    int pid = fork();	
    if (pid == 0) {	
    ptrace(PTRACE_TRACEME, 0, NULL, NULL);	
    execv(path, argv);	
    }	
    return pid;	
}

Launch a process that is attached Attach to a running process

void attach_to_process(pid_t pid) {	
    ptrace(PTRACE_ATTACH, pid, NULL, NULL);	
}

https://man7.org/linux/man-pages/man2/ptrace.2.html



How the debugger “synchronizes” with a process?
void continue_once_attached(pid_t pid) {	
    while (1) {	
        int status;	
        waitpid(pid, &status);	
        if (WIFSTOPPED(status)) {	
            // The reason for the change was that pid stopped.	
            // We should have stopped because of either SIGTRAP and SIGSTOP.	
            assert(WSTOPSIG(status) == SIGTRAP || WSTOPSIG(status) == SIGSTOP);	

            // Continue execution	
            ptrace(PTRACE_CONT, pid, NULL, NULL);	
            break;	
        } else if (WIFEXITED(status)) {	
            // The process exited before we could attach.	
            printf("Process exited\n");	
            break;	
        }	
    }	
}



How the debugger stops a process?
void interrupt_target(pid_t pid) {	
    // kill() is a system call that sends OS signals	
    kill(pid, SIGSTOP);	
    // Must use waitpid in order to wait for the signal to be delivered.	
}



How the debugger reads/writes memory and registers?

// Execute a single instruction in the process.	
ptrace(PTRACE_SINGLESTEP, pid, NULL, NULL);	

// Get non-floating point registers.	
// This includes rsp, rip, rbp, etc.	
struct user_regs_struct regs;	
ptrace(PTRACE_GETREGS, pid, &regs, NULL);	

// Get floating point registers.	
struct user_fpregs_struct fpregs;	
ptrace(PTRACE_GETFPREGS, pid, &fpregs, NULL);	

// Set registers. This can be used to update	
// register values.	
ptrace(PTRACE_SETREGS, pid, &regs, NULL);

// Note: PTRACE_PEEKUSER and PTRACE_POKEUSER	
// provide a more efficient way to read or	
// write a single register.	

// Read a word (8 bytes) from address `addr`	
// in target process memory. Note, despite being	
// called PTRACE_PEEKDATA, on Linux this can	
// read any part of memory, including the	
// text segment.	
uint64_t val;	
val = ptrace(PTRACE_PEEKDATA, pid, addr, NULL);	

// Write a word (8 byte) to address `addr` in	
// target procss memory.	
ptrace(PTRACE_POKEDATA, pid, addr, val);	

// Get information on the signal that caused	
// the target procss to stop.	
siginfo_t sinfo;	
ptrace(PTRACE_GETSIGINFO, pid, &sinfo, NULL);



How to get stack traces?

PTRACE_GETREGS → %rbp

return_addr = *(%rbp + 8)

Using it, the debugger can lookup: 
•	 which function we just came from 
•	 which line in the source

prev_rbp = *%rbp %rbp contains a pointer to 
the previous frame’s %rbp

%rbp → previous %rbp → previous %rbp → ...

Eventually it reaches:

%rbp = 0
This unwinds the stack frame-by-frame

current function  	
→ its caller  	

→ caller’s caller  	
→ ...  	

→ __start
Stack trace!



How to get actual function names and line numbers?
So far, we are only talking about addresses 

We need meta-data!

Key: Symbol tables and symbol files

Address => Global variable names 
Address => Function names 
Address => Source file names and line numbers

Symbols are best efforts, and in practice debuggers cannot always resolve 
    names to values due to compiler optimizations!



Single Stepping 
Key: Rely on hardware to do this!

OS sets TF = 1 in RFLAGS	
CPU executes 1 instruction	
CPU raises INT 1 (debug interrupt)	
Kernel stops the process and reports SIGTRAP	
Debugger returns control to user



Breakpoint

loop:	
    single-step	
    read RIP	
    if RIP == breakpoint_addr: stop

Naive Implementation

Really Slow

Better-performing Solution

orig = PEEKDATA(addr)	
save orig	
POKEDATA(addr, 0xCC)   // write int 3	
continue

Setting a breakpoint

CPU executes 0xCC	
→ INT 3	
→ kernel → SIGTRAP	
→ target process stops	
→ debugger wakes via waitpid()

Hitting a breakpoint

POKEDATA(addr, orig)      // restore true instruction	
SINGLESTEP()              // execute it exactly once	
POKEDATA(addr, 0xCC)      // reinsert breakpoint

Continuing  
after breakpoint



Watchpoints
Watchpoints stop execution whenever the specified memory address is 

read (rwatch) or accessed (awatch)

1. Single-step method   Slow, fallback 
2. Page-fault method     Easy, coarse (page-sized) 
3. Hardware method      Fast, but only 4 slots (DR0–DR3)

3 ways to implement

Page-fault method

Hardware method

the debugger asks the kernel to mark a page in the process 
as inaccessible

 The processor will generate an interrupt whenever the program 
accesses one these addresses


