CS202 (003): Operating Systems
File System lll, continued

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202



Last Time



O u r a I g (borrowed from how transitions are implemented in databases)

Goal: Reduce write/space overhead without violating atomicity

Treat file system operations as transactions:
after a crash, failure recovery ensures
1. committed file system operations are reflected in on-disk data structures
2. uncommitted file system operations are not visible after crash recovery

Record enough information to finish applying committed operations (redo operations)
and/or roll-back uncommitted operations (undo operations)
This information is stored in a redo/undo log



Journaling

Commit point: the point at which there is no turning back

for example
first step — ... — commitpoint —™ ... —— last step

What is the commit point in copy-on-write?



Journaling — redo logging .........

TxnBegin: TID

FS computes what would change due to a operation

l Inode updates
FS computes where in the log it can write this transaction, ana
writes a transactions begin record . Do not have to wait on this. Data Bitmap
l updates
FS writes a record(s) with all the changes it computed in step 1. New data
FS must wait for changes and TxnBegin to finish written to the disk block
Once step 3 finishes, the system writes a transaction end record TxnEnd: TID

|

Once the TxnEnd has been written, the FS asynchronously performs

1 - - )
the actual FS changes checkpointing

ext3 journal layout



Journaling — crash recovery ot redo logging

High-level idea:
read through the logs, find committed operations and apply them

ow to check whether ops are committed? Look at TxnBegin and TxnEnd!
It is safe to apply the same redo log multiple times

FS starts scanning from the beginning of the log

l What to log?

Every time it finds a TxnBegin entry, it looks for the corresponding Logging can double the amount of data written to the disk

TxnEnd entry

l Default: metadata only (assuming people are fine with data
if matching (TxnBegin, TxnEnd) found, FS checkpoints the changes loss after crash)

Ext3 and 4 allows user to choose what to log

l Can change to force data to be logged w/ metadata

Recovery is completed once the entire log is scannead



Journaling — undo logging .....cc...c....

Write a TxBegin entry to the log

|

For each op, write instructions for how to undo any updates.
Changes to the block can be made right after writes finishes

|

Wait for in-place changes to finish for all blocks

|

Write a TxnEnd entry into the block



Journaling — crash recovery from undo logging

Scan to find all uncommitted transactions from the end of the log

|

For each such transaction, check whether undo entry is valid
(checksum)

\4

Apply all valid undo entries found

. Changes can be checkpoints to disk as soon as the undo log has been updated
Benefits — useful when the amount of buffer cache is low

Disadva ntages A transaction is not committed until all dirty blocks have been flushed to their in-place targets



Redo logging vs. Undo logging

A transaction can commit without all in-place updates (writes to actual disk locations) being completed
Benefits — useful when in-place updates might be scattered all over the disk

A transaction's dirty blocks need to be kept in the buffer-cache until the transaction commits
Disadva ntages and all of the associated journal entries have been flushed to disk.
This might increase memory pressure.

. Changes can be checkpoints to disk as soon as the undo log has been updated
Benetits — useful when the amount of buffer cache is low

Disadva ntages A transaction is not committed until all dirty blocks have been flushed to their in-place targets



Combining Redo/Undo Logging ...

Goal: allow dirty buffers to be flushed as soon as their associated journal
entries are written. Transactions are committed as soon as logging is done

Reduce memory pressure when necessary, and have greater flexibility when scheduling disk writes

FS computes what would change due to a operation

FS computes where in the log it can write this transaction, and
writes a transactions begin record . Do not have to wait on this.

FS writes both a redo log entry and an undo log entry for each of the
changes computed in Step 1.
In-place changes can be made once the log information is written.

|

Once TxnBegin and logs are written, write a TxnEnd entry

|

Once the TxnEnd has been written, the FS asynchronously performs
the actual FS changes



Journaling — crash recovery from redo+undo logging

FS starts scanning from the beginning of the log Scan to find all uncommitted transactions from the end of the log
Every time it finds a TxnBegin entry, it looks for the corresponding For each such transaction, check whether undo entry is valid
TxnEnd entry (checksum)
If matching (TxnBegin, TxnEnd) found, FS checkpoints the changes Apply all valid undo entries found

|

Recovery is completed once the entire log is scanned

Step 1: Redo pass Step 2: Undo pass

Designed for a time when the same Operating System ran on machines with very little
memory (8-32MB), and also on "big-iron" servers with lots of memory (1GB+).
This was an attempt to get the best of both worlds.



CS202 (003): Operating Systems
How Debugger Works

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202



What is a debugger?

A process that has some control over another process



Why is debugger cool?

The high-level functionality is invaluable to software developers

Set breakpoints
(break)

Pause a process

(attach)
Single step through the process

(stepi is one assembly instruction, step is one line of C code)
Continue process execution from the paused points

(continue)

Generate a stack trace
(backtrace)

Read and modity values of variables, which might be on the stack, heap or data segment
(x or print to read, set $varname to modify)
Read and modity program code (the TEXT area)
(disassemble to read)
Read and modity program registers
(info registers and print to read, and set $regname to write)
Modity parameters and return values for system calls
(call and catch syscall)

Set watchpoints
(watch, awatch and rwatch)



Why is debugger cool?

We have talked about that “Process are isolated from each other”

How can debugger access the target's memory?
How can debugger stop target’s execution at specific address?

How can debugger “single-step” another process?



Why is debugger cool?

Debugger requires a lot of effort to make it work!

Stack frames Virtual memory Interrupts Signals

Operating system and CPU



Attach and controlling a process

Launch a process that is attachea Attach to a running process
void launch attached(const char* path, void attach to process(pid t pid) {
char* const argv[]) { ptrace(PTRACE_ATTACH, pid, NULL, NULL);
int pid = fork(); }

if (pid == 0) {
ptrace(PTRACE TRACEME, ©, NULL, NULL);
execv(path, argv);

}

return pid;

https://man7.org/linux/man-pages/man2/ptrace.2.htmi



How the debugger “synchronizes” with a process?

void continue once attached(pid t pid) {
while (1) {

int status;

waitpid(pid, &status);

if (WIFSTOPPED(status)) {
// The reason for the change was that pid stopped.
// We should have stopped because of either SIGTRAP and SIGSTOP.
assert (WSTOPSIG(status) == SIGTRAP || WSTOPSIG(status) == SIGSTOP);

// Contlinue execution
ptrace(PTRACE CONT, pid, NULL, NULL);
break;
} else if (WIFEXITED(status)) {
// The process exited before we could attach.
printf("Process exited\n");
break;



How the debugger stops a process?

void interrupt target(pid t pid) {
// kill() is a system call that sends 0S signals
kill(pid, SIGSTOP);
// Must use waltpid in order to wailit for the signhal to be delivered.



How the debugger reads/writes memory and registers?

// Execute a single instruction in the process.
ptrace(PTRACE _SINGLESTEP, pid, NULL, NULL);

// Get non-floating point registers.

// This includes rsp, rip, rbp, etc.
struct user _regs struct regs;
ptrace(PTRACE_GETREGS, pid, &regs, NULL);

// Get floating point registers.
struct user_ fpregs struct fpregs;
ptrace(PTRACE_GETFPREGS, pid, &fpregs, NULL);

// Set registers. This can be used to update
// register values.
ptrace(PTRACE_SETREGS, pid, &regs, NULL);

//
//
//

//
//
//
//
//

Note: PTRACE PEEKUSER and PTRACE POKEUSER
provide a more efficient way to read or
write a single register.

Read a word (8 bytes) from address " addr’

in target process memory. Note, despite being
called PTRACE PEEKDATA, on Linux this can
read any part of memory, including the

text segment.

uinté4 t val;
val = ptrace(PTRACE_PEEKDATA, pid, addr, NULL);

// Write a word (8 byte) to address “addr  1in

//

target procss memory.

ptrace(PTRACE_POKEDATA, pid, addr, val);

//

Get information on the signal that caused

// the target procss to stop.
siginfo_t sinfo;
ptrace(PTRACE_GETSIGINFO, pid, &sinfo, NULL);



How to get stack traces?

return address
—>| previous rbp

| Locals and
variables

return address
previous rbp

L ocals and
variables

return address
previous rbp

—>

%rbp

L ocals and
variables

PTRACE_GETREGS - %rbp Using it, the debugger can lookup:

e  which function we just came from

return_addr = *(%rbp + 8) e which line in the source

%rbp contains a pointer to

prev_rbp = *%rbp .
the previous frame’s %rbp

%rbp - previous %rbp - previous %rbp - ...

Eventually it reaches:

This unwinds the stack frame-by-frame
%rbp = ©

current function
- its caller
- caller’s caller
é e o o

» _ start

Stack trace!



How to get actual function names and line numbers?

So far, we are only talking about addresses
We need meta-datal

Key: Symbol tables and symbol files

Address => Global variable names
Address => Function names
Address => Source file names and line numbers

Symbols are best efforts, and in practice debuggers cannot always resolve
names to values due to compiler optimizations!



Single Stepping
Key: Rely on hardware to do this!

OS sets TF = 1 in RFLAGS
CPU executes 1 instruction
CPU raises INT 1 (debug interrupt)

Kernel stops the process and reports SIGTRAP
Debugger returns control to user



Breakpoint

Naive Implementation Better-performing Solution
loop:. orig = PEEKDATA(addr)
single-step save orig . .
read RIP POKEDATA(addr, ©xCC) // write int 3 Setting a breakpoint

continue

if RIP == breakpoint_addr: stop

CPU executes 0xCC

- INT 3
> kernel - SIGTRAP Hitting a breakpoint
-» target process stops

Rea”y S‘OW » debugger wakes via waitpid()
POKEDATA(addr, orig) // restore true instruction Continuing
SINGLESTEP() // execute it exactly once

POKEDATA(addr, @xCC) // reinsert breakpoint after breakpoint



Watchpoints

Watchpoints stop execution whenever the specified memory address is
read (rwatch) or accessed (awatch)

1. Single-step method Slow, fallback

3 ways to implement 2. Page-fault method  Easy, coarse (page-sized)
3. Hardware method  Fast, but only 4 slots (DRO-DR3)

Page-fault method the debugger asks the ke.rnel to mark a page in the process
as inaccessible

The processor will generate an interrupt whenever the program
Hardware method P J P Pro3
accesses one these addresses



