
CS202 (003): Operating Systems
File System II
Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last Time

Directories
 "Spend all day generating data, come back the next

 morning, want to use it.”
 — F. Corbató, on why files and directories are invented.

How to achieve this?
Users remember where on disk their files are (disk sector no.)?…

Use human-friendly names to represent files

That’s why directories exist map names to file blocks on the disk

provide a structured way
to organize files

convenient naming interface that allows the separation of logical
file organization from physical file placement on the disk

Short history of directories

Single directory for
the entire system

Put directory at a known disk location

Directory contains pairs of <name, inumber>

If one user uses a name, no one else can

Ancient computer’s style

Single directory for
each user

Still clumsy, and ls on 10,000 files is a real pain

Hierarchical name
spaces

Allow directory to map names to files or other directories

FS forms a tree (or graph, if links allowed)

Large name spaces tend to be hierarchical

Hierarchical Unix
Used since CTSS (1960s), unix picked it up and used quite nicely

Directories stored on the disk just like regular files

A directory is a list of entries (tuple, location is typically the inode #)

Key point: inode # might reference another directory
=> neatly turn the FS to a hierarchical tree

i-node for directory
contains a special flag bit,

only special users can
write directory files

Naming MagicNamingmagic

• Bootstrapping: Where do you start looking?
- Root directory always inode #� (� and � historically reserved)

• Special names:
- Root directory: “/”
- Current directory: “.”
- Parent directory: “..”

• Some special names are provided by shell, not FS:
- User’s home directory: “⇠”
- Globbing: “foo.*” expands to all files starting “foo.”

• Using the given names, only need two operations to navigate
the entire name space:
- cd name: move into (change context to) directory name
- ls: enumerate all names in current directory (context)

�� / ��

https://www.scs.stanford.edu/19wi-cs140/notes/file_systems.pdf

Example

Two files:
/a/foo.c
/b/c/essay.txt

Hard and soft links

Hard link

Soft link
(i.e. “name”)

Multiple directory entries point to the same node.
Unix stores count of pointers to inode

What happens if one link is removed? the data are still accessible through any other link that remains

What happens if all links are removed? the space occupied by the data is freed

Point to a file/dir name, but the “point-to” file/
dir might not exist

Create a new node with a special “symlink” bit set and
contains name (path) of the linked target

Hmmm, what happen if there are cycles? can’t create hard link to directories

Example

Two files:
/a/foo.c
/b/c/essay.txt

$	ln	/b/c/essay.txt	/a/hello.txt	
$	ln	-s		/b/c/essay.txt	/a/x

Performance
Unix FS is simple and element, but… also slow

Usability problems:
 - 14-character file names a pain
 - Can’t atomically update file in crash-proof way

- Blocks too small (512 bytes)
- Inode has:

- Too many layers of mapping indirection
- Transfer rate low (get one block at time)

Poor clustering of related objects:
 - Consecutive file blocks not close together
 - Inodes far from data blocks (all at the beginning of the disk)
 - Inodes for directory not close together
 - Poor enumeration performance: e.g., “ls”, “grep foo *.c”

FFS fixes these problems to a certain degree

Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry. 1984. A fast file system for UNIX. ACM Trans. Comput. Syst. 2, 3 (Aug. 1984), 181–197. https://doi.org/10.1145/989.990

Fast File System
What can we do to improve?

make block size bigger (4 KB, 8KB, or 16 KB)

cluster files in the same directory

make data blocks and inodes closer to each other

bitmaps to track free blocks (store separately)

reserve 10% space (user don’t know about it)

improving consistency (atomic rename, symbolic links, …)

https://www.scs.stanford.edu/19wi-cs140/notes/file_systems.pdf

Making block size bigger

https://www.scs.stanford.edu/19wi-cs140/notes/file_systems.pdf

What happen if the data is smaller than the block size?

Data transfer overhead increases
Block wastage (internal fragmentation) increases

FFS: Use of Bitmaps
Bitmaps to track free blocks (store separately)

easier to find contiguous blocks
can keep the entire thing in memory

2 TB disk / 4KB disk blocks
= 500,000,000 entries = 60MB.

https://www.scs.stanford.edu/19wi-cs140/notes/file_systems.pdf

FFS: Clustering related objects

	 [superblock	|	bookkeeping	info	|	inodes	|	bitmap	|	data	blocks	(512	bytes	each)]

Each cylinder group basically a mini-Unix file system

When file grows too big send its remainder to dierent cylinder group.

https://www.scs.stanford.edu/19wi-cs140/notes/file_systems.pdf

New directories are being placed in a cylinder group (a section of the filesystem) that has more free inodes than average.

FFS: Performance

https://www.scs.stanford.edu/19wi-cs140/notes/file_systems.pdf

20-40% of disk bandwidth for large files

10-20x of original Unix file system!

Still not the best we can do
(meta-data writes happen synchronously, which really hurts performance.

but making asynchronous requires a story for crash recovery.)

FFS: Other hacks

https://www.scs.stanford.edu/19wi-cs140/notes/file_systems.pdf

Big file cache

kernel maintains a buffer cache in memory

ReadDiskCache(blockNum,	readbuf)	{	
ptr	=	buffercache.get(blockNum);		
if	(ptr)	{	
	 copy	BLKSIZE	bytes	from	ptr	to	readbuf	
}	else	{	

	 	 newBuf	=	malloc(BLKSIZE);	
	 	 ReadDisk(blockNum,	newBuf);	
	 	 buffercache.insert(blockNum,	newBuf);	
	 	 copy	BLKSIZE	bytes	from	newBuf	to	readbuf	

}

Reduce rotation delay No rotation delay if you're reading the whole track.

Work with big chunks
Read ahead in big chunks (64KB)
Write in big chunks

