CS202 (003): Operating Systems
File System I

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last Time

Directories

"Spend all day generating data, come back the next

morning, want to use it.”
— F. Corbatd, on why files and directories are invented.

Users remember where on disk their files are (disk sector no.)?...

How to achieve this? | |
Use human-friendly names to represent files

That's why directories exist map names to file blocks on the disk

2

provide a structured way convenient naming interface that allows the separation of logical

to organize files file organization from physical file placement on the disk

Si

Short history of directories

ngle directory for

ne entire system

Single directory for

e€acn user

Hierarchical name

spaces

Put directory at a known disk location
Directory contains pairs of <name, inumber> Ancient computer’s style

If one user uses a name, no one else can

Still clumsy, and Is on 10,000 files is a real pain

Allow directory to map names to files or other directories

FS forms a tree (or graph, if links allowed)

Large name spaces tend to be hierarchical

Hierarchical Unix

Used since CTSS (1960s), unix picked it up and used quite nicely

bin dvdrom dev sbin tmp usr

Directories stored on the disk just like regular files

A directory is a list of entries (tuple, location is typically the inode #) -node for directory

contains a special flag bit,

. , . only special users can
Key point: inode # might reference another directory write directory files

=> neatly turn the FS to a hierarchical tree

Naming Magic

Bootstrapping: Where do you start looking?
Root directory always inode #2 (0 and 1 historically reserved)

Special names:
Root directory: “/”

¢« »

Current directory: “.
Parent directory: “. .

by

Some special names are provided by shell, not FS:

User’s home directory: “~”
Globbing: “foo.*” expands to all files starting “foo.’

)

Using the given names, only need two operations to navigate
the entire name space:

cd name: move into (change context to) directory name
1s: enumerate all names in current directory (context)

24 /38

https://www.scs.stanford.edu/19wi-cs140/notes/file_systems.pdf

Two files:
/a/too.c
/b/c/essay.txt

0O 1 2 3 4» 5 R 8
- E@C 4J ‘ngd'*“ 4
~l2 T £ 1
blb 9 - —
O A) 3
{,-5(wdade ... %C’G&j g@S Void Loa) (\ Lle syt 'S
:V\'ﬁ V\AO‘W\(\ i O.Q/QVQ(C;(—:B Sowna @ ¢ - e .
Syerews 3.

-
—~
- ~ o~

Hard and soft links

. . . . isting fil link to create
Multiple directory entries point to the same node. **™ "™
Hard link . . .
Unix stores count of pointers to inode ln foo bar
foo bar
What hapoens if one link is removed? the data are stil ible through any other link that remain \ /
pp e data are still accessible througn any othe at remains inode#3|279

refcount = 2

What happens if all links are removed? the space occupied by the data is freed

Hmmm, What happen |'f there are CyC|eS? can't create hard link to directories
ln foo bar

foo bar w
NIV
Point to a file/dir name, but the “point-to” file/ oy |
Soft link dir might not exist
(i.e. “name”) Create a new node with a special “symlink” bit set ana
contains name (path) of the linked target barz — ::fcr;’umzl

ln —s bar barz

Two files:
/a/too.c
/b/c/essay.txt

$ In /b/c/essay.txt /a/hello.txt
$ In -s /b/c/essay.txt /a/x

Example

0 14 2 3 4 5 b R %

B [Qeo-c |ecsotj 4|

Al 3T '

L7] het\o.+¢4 -ro—\ _C—— E 1 \ \ i \

bl £ | A B

3
PN —
——
O A 2 3 4
{T-k "V\C'\O&Q Y %fag\|%@5 Void ‘G"'D(\ C\ —Q“\esj ¢ Y 'S /blc (CQSo«(.-\-%J\'
:V\'ﬁ V\AO\W\(\ i O_Q_/S?Q(O'(—:'b SowA @ L
S\IQ\—QLMS

N
-~
-~ -~ -

Performance

Unix FS is simple and element, but... also slow

- Blocks too small (512 bytes)
inodes data blocks (512 bYTCS) - Inode has:

- Too many layers of mapping indirection
superblock disk .) % PP .
- Transter rate low (get one block at time)
Poor clustering of related objects: Usability problems:
- Consecutive file blocks not close together - 14-character tile names a pain
- Inodes far from data blocks (all at the beginning of the disk) - Can't atomically update file in crash-proof way

- Inodes for directory not close together

- Poor enumeration performance: e.g., “Is”, “grep foo *.c”

Old Unix (& DOS): Linked list of free blocks
- Just take a block off of the head. Easy.

A o : .
oad— : 4 FFS tixes these problems to a certain degree

- Bad: free list gets jumbled over time. Finding adjacent blocks hard

and slow larshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry. 1984. A fast file system for UNIX. ACM Trans. Comput. Syst. 2, 3 (Aug. 1984), 181-197. https://doi.org/10.1145/989.990

Fast File System

What can we do to improve?

make block size bigger (4 KB, 8KB, or 16 KB)
cluster files in the same directory
make data blocks and inodes closer to each other
bitmaps to track free blocks (store separately)
reserve 10% space (user don't know about it)

improving consistency (atomic rename, symbolic links, ...)

https://www.scs.stanford.edu/19wi-cs140/notes/file_systems.pdf

Making block size bigger

What happen if the data is smaller than the block size?

Data transfer overhead increases

Block wastage (internal fragmentation) increases

» BSD FFS:

- Has large block size (4096 or 8192)
- Allow large blocks to be chopped into small ones (“fragments”)
- Used for little files and pieces at the ends of files

file a

https://www.scs.stanford.edu/19wi-cs140/notes/file_systems.pdf

FFS: Use of Bitmaps

easier to find contiguous blocks

Bitmaps to track free blocks (store separately) can keep the entire thing in memory

b = (number of bits per word) * (number of @-value words) + offset to first 1 bit

(c)
e bit[b] == 1 = block[b] is free 0 1 . . : - "
e bit[b] == @ = block[b] is allocated or in use 00 . 000000 | 00 . 000000 | 00 . 000000 | 11 . 111000 | 11 111111 | 11 _ 111111 | 11 111111
0-value words 5 < words with all 1-bits
(d)

4\

bdes | block bt \byte
ouskfg/gys—#r 0\7“‘ Lk Bk s 2 TB disk / 4KB disk blocks

2L . M _ . _
7y 2'yp e erE | = 500,000,000 entries = 60MB.

https://www.scs.stanford.edu/19wi-cs140/notes/file_systems.pdf

FFS: Clustering related objects

* Tries to put sequential blocks in adjacent sectors

. . . ¢« - 9
* Group sets of consecutive cylinders into “cylinder groups -~ (Access one block, probably access next)

— 1 T —
((:1::
Cylinder group 1— — = —

— o— — E .
| —-"("".__- — —— file a file b
cylinder group 2 I e R
\ — — * Tries to keep inode in same cylinder as file data:
— il = - (If you look at inode, most likely will look at data too)
~ \k\ e /_——

- Key: can access any block in a cylinder without performing a seek.
Next fastest place is adjacent cylinder.

- Tries to put everything related in same cylinder group * Tries to keep all inodes in a dir in same cylinder group
- Tries to put everything not related in different group - Access one name, frequently access many, e.g., “1s -1”"

Each cylinder group basically a mini-Unix file system

[superblock | bookkeeping info | inodes | bitmap | data blocks (512 bytes each)]

New directories are being placed in a cylinder group (a section of the filesystem) that has more free inodes than average.

When tile grows too big send its remainder to dierent cylinder group.

https://www.scs.stanford.edu/19wi-cs140/notes/file_systems.pdf

FFS: Performance

20-40% of disk bandwidth for large files

10-20x of original Unix tile system!

Still not the best we can do
(meta-data writes happen synchronously, which really hurts performance.

but making asynchronous requires a story for crash recovery.)

https://www.scs.stanford.edu/19wi-cs140/notes/file_systems.pdf

FFS: Other hacks

kernel maintains a buffer cache in memory

ReadDiskCache(blockNum, readbuf) {
ptr = buffercache.get(blockNum);
L if (ptr) {
Blg flle CaChe copy BLKSIZE bytes from ptr to readbuf

} else {
newBuf = malloc(BLKSIZE);
ReadDisk(blockNum, newBuf);
buffercache.insert(blockNum, newBuf);
copy BLKSIZE bytes from newBuf to readbuf

¥

Reduce rotation delay No rotation delay it you're reading the whole track.

| | Read ahead in big chunks (64KB)
Work with big chunks Write in big chunks

https://www.scs.stanford.edu/19wi-cs140/notes/file_systems.pdf

