CS202 (003): Operating Systems
File System |

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last Time

What does file system do?

Provide persistence
Provide a way to "name” a set of bytes on the disk (files)

Provide a way to map from human-friendly-names to “names” (directories)

Where are file systems implemented?

Disk, over network, in memory, in NVRAM, on tape, with paper...

We are going to focus on the disk and generalize later

Important properties of disks:
(a) information don’t go away
(b) we can modify most of the information (except BIOS ROM, ...)

Therefore:
(a) we are going to put all our important state on the disk
(b) we have to live with what we put on the disk

What is a file?

’ a bunch of named bytes on the disk collection of disk blocks

What FS does...

a bunch of named bytes on the disk collection of disk blocks —

Map name and offset to disk blocks

Operations create (file), delete (file), read, write

Goal: operations have as few disk access as possible and minimal space overhead

Why care about space overhead when disks are huge?

while disk space might be plentiful, efficient space usage is crucial for
performance because it affects both cache utilization and |/O efficiency.

Address translations

page table
virtual address » physical address

iInode
offset » disk block address

The inode contains the mapping between file
offsets and disk block addresses

directory
file name » file # (node)

Directories provide the mapping from human-
readable names to inode numbers

access pattern
we could support

Some
observations

Implementing files

Goal: operations have as few disk access as possible and minimal space overhead

for now we're going to assume that the file's metadata is known to the system

Sequential Random Keyea

Address any block in file directly without

File data processed in sequential order Search for block with particular values

passing through the rest of the blocks
Examples: associative database, index
Examples: large data sets, demand This thing is everywhere in the field of
paging, databases databases, search engine, but not
usually provided by a FS in a OS

By far the most common mode
Example: editor writes out new file,
compiler reads in file, etc

All blocks in file tend to be used together, sequentially Most files are small Much of the disk is allocated to large files

All tiles in directory tend to be used together Many of the I/O operations are made to large files

All names in directory tend to be used together Want good sequential and good random access

Candidate Designs

Contiguous “extend based” Linked Files
User must declare the file size upfront before creation g
The entire space for the file is allocated at once 5
File metadata tracks: starting location, file size , ,
J Keep a linked list of free blocks
[<free> al a2 a3 <5 free> bl b2 <free>] Each block holds pointer to the next one
what if 3 file ¢ needs 7 sectors?! Metadata: pointer to file’s first block
Advantages: simple implementation, fast file access Advantages: no more fragmentation,
(both sequential and random) easy sequential access

: , Disadvantages: bad random access, pointers
Disadvantages: fragmentation , ,
take up room in blocks (mess up data alignment)

Candidate

Basic Indexed Files

File Header

Data Block 1
Metadata (size, creation date, etc/
Index Arra
(Allocated whepAife is created)

‘ Poinwmnter 2 inter 3

/ Data Block 2

\ Data Block 3

Free List

Rl Free Block 1

Free Block 2

Free Block 3

Designs - Indexed Files

Multi-level Indexed Files

[Root Index]
[Index Level 1] [Index Level 1] [Index Level 1]

YN\ ' '

Index Level 2 Index Level 2 Index Level 2 Index Level 2

NNy v

Data Block Data Block Data Block Data Block Data Block Data Block

Each file has an array containing pointers to all its data blocks

The array is allocated when the file is created

Address the limitation of basic indexed files

Blocks are allocated dynamically using a free list system

Advantages: sequential and random access are both easy

Disadvantages: need to store the array somewhere

Advantages: more efficient space utilization, flexible allocation

Disadvantages: multiple disk accesses required to reach data
blocks, performance penalty for each level traversed

Candidate Designs - Unix Inode Structure

Inode

Permissions
Access Time
Modification Time

Inode Change Time

link count (# directories

COﬂtaiﬂing f||e) Link Count
Direct Ptr 1

Direct Ptr 2-10...

Double Indirect Ptr 13

Triple Indirect Ptr 14

NN

Data Block

Data Block

/ Data Block

Pointer

Pointer

Pointer

Double Indirect

Ptr to Indirect M. Indirect

. 4 Block

Ptr to Indirect

>
>

= Pointer
Triple Indirect

Ptr to Dbl Indirect

“Why is this intentionally imbalanced?”

optimize for short files. each level of
this tree requires a disk seek

Advantages: simple, easy to build; fast access to small files; maximum file length can be enormous

Disadvantages: worst case # of accesses pretty bad, worst case overhead pretty bad,

because you allocate blocks by taking them off unordered freelist, metadata and data get strewn across disk

Some notes about inode

Fixed-size array storage : Inodes Data Region
I—I—I_I_I_I—I_I_IDDDDDDDD DD[DIDDDDD] I_I_I_I—I—I—I_I_ID DIDID[D[DIDD
. 15F-{I6 23 24
Fixed array size during initialization DIDDIDDIDDD mrmmmmmt% b B oIIoIDID BIDIDIDIB DD
32 3940 4748 5556 = 63
Multiple inodes per disk block (@ FS layout from the text book)

Lives in known location, originally at one side of disk,
now lives in pieces across disk (helps keep metadata close to data)

The index of an inode in the inode array is called an
i-number (OS refers to files by i-numbers)

When a file is opened, the inode brought in memory (written
back to disk when moditied and file closed or time elapses)

