
CS202 (003): Operating Systems
File System I
Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last Time

What does file system do?

Provide persistence

Provide a way to “name” a set of bytes on the disk (files)

Provide a way to map from human-friendly-names to “names” (directories)

Where are file systems implemented?

Disk, over network, in memory, in NVRAM, on tape, with paper…

We are going to focus on the disk and generalize later

 Important properties of disks:
(a) information don’t go away
(b) we can modify most of the information (except BIOS ROM, …)

 Therefore:
(a) we are going to put all our important state on the disk
(b) we have to live with what we put on the disk

What is a file?

a bunch of named bytes on the disk collection of disk blocks

What FS does…

a bunch of named bytes on the disk collection of disk blocks

Map name and offset to disk blocks

Operations create (file), delete (file), read, write

Goal: operations have as few disk access as possible and minimal space overhead

Why care about space overhead when disks are huge?

while disk space might be plentiful, efficient space usage is crucial for
performance because it affects both cache utilization and I/O efficiency.

Address translations

The inode contains the mapping between file
offsets and disk block addresses

Directories provide the mapping from human-
readable names to inode numbers

virtual address physical address
page table

offset disk block address
inode

file name file # (node)
directory

Implementing files

Goal: operations have as few disk access as possible and minimal space overhead

for now we're going to assume that the file's metadata is known to the system

ac
ce

ss
 p

at
te

rn

w
e

co
ul

d
su

pp
or

t Sequential

By far the most common mode
Example: editor writes out new file,

compiler reads in file, etc

File data processed in sequential order

Random

Address any block in file directly without
passing through the rest of the blocks

Examples: large data sets, demand
paging, databases

Keyed

Search for block with particular values

Examples: associative database, index
This thing is everywhere in the field of

databases, search engine, but not
usually provided by a FS in a OS

So
m

e
ob

se
rv

at
io

ns All blocks in file tend to be used together, sequentially

All files in directory tend to be used together

All names in directory tend to be used together

Most files are small Much of the disk is allocated to large files

Many of the I/O operations are made to large files

Want good sequential and good random access

Candidate Designs

“extend based”

User must declare the file size upfront before creation
The entire space for the file is allocated at once
File metadata tracks: starting location, file size

[<free>	a1	a2	a3	<5	free>	b1	b2	<free>]
what if a file c needs 7 sectors?!

Advantages: simple implementation, fast file access
(both sequential and random)

Disadvantages: fragmentation

Contiguous Linked Files

Keep a linked list of free blocks
Each block holds pointer to the next one

Metadata: pointer to file’s first block

Advantages: no more fragmentation,
easy sequential access

Disadvantages: bad random access, pointers
take up room in blocks (mess up data alignment)

Candidate Designs - Indexed Files

Basic Indexed Files

Each file has an array containing pointers to all its data blocks
The array is allocated when the file is created

Blocks are allocated dynamically using a free list system

Advantages: sequential and random access are both easy

Disadvantages: need to store the array somewhere

Multi-level Indexed Files

Address the limitation of basic indexed files

Advantages: more efficient space utilization, flexible allocation

Disadvantages: multiple disk accesses required to reach data
blocks, performance penalty for each level traversed

File Header
Metadata (size, creation date, etc.)

Index Array
(Allocated when file is created)

Pointer 1 Pointer 2 Pointer 3

Pointer 4 NULL NULL

Data Block 1

Data Block 2

Data Block 3

Data Block 4

Free List

Free Block 1

Free Block 2

Free Block 3

Root Index

Index Level 1 Index Level 1 Index Level 1

Index Level 2 Index Level 2 Index Level 2 Index Level 2

Data Block Data Block Data Block Data Block Data Block Data Block

Candidate Designs - Unix Inode Structure

Advantages: simple, easy to build; fast access to small files; maximum file length can be enormous

Disadvantages: worst case # of accesses pretty bad, worst case overhead pretty bad,
because you allocate blocks by taking them off unordered freelist, metadata and data get strewn across disk

“Why is this intentionally imbalanced?”

optimize for short files. each level of
this tree requires a disk seek

Inode

Permissions

Access Time

Modification Time

Inode Change Time

Link Count

Direct Ptr 1

Direct Ptr 2-10...

Indirect Ptr 11

Indirect Ptr 12

Double Indirect Ptr 13

Triple Indirect Ptr 14

Data Block

Data Block

Data Block

Indirect Block

Pointer

Pointer

Pointer

Pointer

Double Indirect

Ptr to Indirect

Ptr to Indirect

Triple Indirect

Ptr to Dbl Indirect

Indirect
Block

link count (# directories
containing file)

Some notes about inode

Fixed-size array storage

Fixed array size during initialization

Multiple inodes per disk block

Lives in known location, originally at one side of disk,
 now lives in pieces across disk (helps keep metadata close to data)

The index of an inode in the inode array is called an
i-number (OS refers to files by i-numbers)

When a file is opened, the inode brought in memory (written
back to disk when modified and file closed or time elapses)

(a FS layout from the text book)

