CS202 (003): Operating Systems
Disks

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last Time

Disks

Rotate together on central
spindle (3600-15000 RPM)

Spindle ponq R€@d/writes to platters

Stack of magnetic platters Piatter
Actuator Arm

All rotate together

Actuator Axis

Power Connector

Jumper Block
Actuator

IDE Connector

By |, Surachit, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4275514

Geometry of a disk

disk read-and-write head \

floating on a cushion of air —
magnetic layer ::: ::: :::

aluminum plate 1 bit

circle on a platter. each platter is

divided into concentric tracks track
= | Generally, one head is active at a time
chunk of a track sector
roughly lined up on a cylinder
disk read-and-write
" heads
locus of all tracks of fixed radius on
cylinder

all platters Disk positioning system:

move head to a specitic track and keep it there

Four phases of seek:

speedup: accelerate arm to max speed or halft way point
coast: at max speed (for long seeks)
slowdown: stops arm near destination
settle: adjusts head to actual desired track

By Henry Mihlpfordt, png version from 2010: Bagok - Own work, vectorization of: Festplattengeometrie.PNG, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=79334677

Performance

Total transter time Rotational delay + seek delay + transfer time

Seeking track-to-track: comparatively fast (~1ms). mainly settle time
Short seeks (200-400 cyl.): dominated by speedup
Longer seeks: dominated by coast
Head switches: comparable to short seeks
Seek

Note: settle time takes longer for writes than reads.
(because if read strays, the error will be caught, and the disk can retry,
if the write strays, some other track just got clobbered, so write settles need to be done precisely)

For instance:

Time to seek 1/3 of the disk
1/3 of the time to seek the whole disk
Question: are they the same? No!

“Average seek time”

Common #s

Capacity: in TBs
Platters: 8
of cylinders: >= tens of thousands
RPM: 10,000

Transfer rate: 50-150 MB/s

Mean time between failures: ~1-2 million hours

How driver interfaces to disk?

Disk interface presents linear array of sectors
Traditionally 512 bytes (moving to 4KB nowadays)
Sectors Written atomically (even if power failure; disk saves enough momentum to complete)
Larger atomic units have to be synthesized by OS (will discuss later)

Disk maps logical sector # to physical sectors

Zoning: puts more sectors on longer tracks

L Track skewing: sector O position varies by track, but let the disk worry about it.

Some optimizations . .
Why? (for speed when doing sequential access)

Sparing: tlawed sectors remapped elsewhere

OS has no idea what is going on with all these!

Disk performance example

Spindle Speed: 7200 RPM Avg Seek Time, read/write: 10.5ms / 12 ms
Transfer rate (surface to buffer): 54 MB/s

How long would it take to do 500 sector reads, spread out randomly over the disk (and serviced in FIFO order)?

(rotation delay + seek time + transfer time)*500
rotation delay: 60s/1lmin * 1 min/7200 rotations = 8.33 ms

on average, you have to wait for half a rotation: 4.15 ms
seek time: 10.5 ms (given)

transfer time: 512 bytes * 1 s/54 MB * 1MB/10"6 bytes = .0095 ms
per read: 4.15 ms + 10.5 ms + .0095 ms = 14.66 ms
500 reads: 14.66 ms/request * 500 requests = 7.3 seconds.

total throughput: data/time

35KB/s

Disk performance example

Spindle Speed: 7200 RPM Avg Seek Time, read/write: 10.5ms / 12 ms
Transfer rate (surface to buffer): 54 MB/s

ow long would it take to do 500 sector reads, sequentially on the disk (and serviced in FIFO order)?

rotation delay + seek time + 500*transfer time
rotation delay: 4.15 ms (same as above)

seek time: 10.5 ms (same as above)

transfer time: 500 * .0095 ms = 4.75 ms

total: 4.15 ms + 10.5 ms + 4.75 ms = 19.5 ms
total throughput: 13.1 MB/s

Sequential vs. Random Reads

Sequential reads are MUCH faster than random reads!

So what do we do?

"The secret to making disks fast is to treat them like tape”

Disk keeps reading at last host request otherwise sequential read would incur whole revolution

Dish Cache for Read-ahead Should read-ahead cross track boundaries?
a head-switch cannot be stopped, so there is a cost to aggressive read ahead.

(if battery backed): data in buffer can be written over many times before actually being put
back to disk. also, many writes can be stored so they can be scheduled more optimally

(if not battery backed): then policy decision between disk and host about whether to report
data in cache as on disk or not

Write Caching

The system (OS or disk controller) can reorder o Strategy 1: Maximize I/O Concurrency:

pending I/0O requests to minimize head movement e Issue multiple I/O requests simultaneously
e Allows the system to optimize request ordering
L , Requirements for effective request ordering: o Strategy 2: Memory-Centric Design:
Minimize seek times

e Multiple pending I/O requests must be available e Keep primary data structures in memory
e System must support |/O concurrency e Use write-logging for persistence
e More requests = better optimization opportunities e Write backups sequentially to disk

e Avoid random-access reads entirely

Technology and System Trends

Disk Performance

Storage Density

Addressing Disk Access
Bottleneck

Memory Size Impact

Cloud Computing Impact

Mechanics of disks (seeks and rotational delays) have not kept up with huge growth in other
computer components (CPU, RAM, ...)
However, data transfer bandwidth has shown steady improvement at roughly 10x per decade

Density is growing fast! (because it is less about mechanical limits)
Key: minimizing the distance between the read/write head and disk surface
(well, what happen if the head touch the surtace?)

Leverage increased bandwidth to fetch larger chunks of data per access
Trade higher latency for better bandwidth utilization

Optimize data placement by clustering related data physically close together on disk
(This clustering allows efficient retrieval of related data once the initial seek cost is paid)

System memory (RAM) size is growing faster than typical workload sizes, leading to:
e More data fitting in file cache

e Changed disk access patterns: predominantly writes and new data access

e Makes logging and journaling more practical as performance strategies

Allow decoupling computer from storage: Small CPUs with a lot of storage attached

Remarks about Disks

HDD have historically been the bottleneck in many systems

Although this becomes less and less true every year
(because of SSDs, PM, ...)

Hmmm, so why are we studying them?
Disks are still widely used (cheap, better durability than SSD, great for backup),
especially in large cloud infrastructure

Many filesystems were designed with disk in mind
(sequential access throughput much higher than random access)

Pattern: large setup costs, followed by efficient batch transfer,
shows up in a lot of hardware and systems

