CS202 (003): Operating Systems
Context switches, user-level threading

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last Time

User-level Threading

Kernel-level Threading

Kernel directly manage the threads

Multiple threads within the same process share the same %cr3 value
(which points to a page table, meaning threads share the same memory space)

Kernel threads are always preemptivel!

User-level Threading

Managed in the user space by a threading library — kernel only sees a single process

Threading package is responsible for:
Maintaining TCBs
Make a new stack for each new thread
Scheduling

User-level threading can be non-preemptive/preemptive

Context Switching for

Cooperative multithreading

a context switch takes place only at wel
when the thread calls yield() and when t

block on 1/0.

-de

ined points:

ne t

nread would

ldea: signal as abstracting interrupt (hardware feature)

Hardware has interrupts
OS provides signals
Programs use signals

Remark: OS's job is to give a user-space process the illusion that
it's running on something like a machine, by creating abstractions

user-level threading

Preemptive multithreading
Not commonly used in production systems

How to arrange for package to get interrupted?
Signals!

Deliver a periodic timer interrupt or signal to a

thread schedu
When it gets its interru

er [setitimer()].

ot, swap out the thread,

run another one

Benefits: performance (maybe?)

Drawbacks: add complexity (without much gain)

Context Switching

Switching the view of memory (%cr3)

Switching the registers

Context Switching tor user-level threading

Switching the registers swtch() does the job

© 00 N O O A WO DN =

o o0 o0 o0 a0 A B B D B~ DA DDA DB OOOOWOOOWOWWOWWWWLWMNDMDDDNDMDDDDNDDNDDMDNDDDDNDDND &2 2 2 a2 g a4
A WO N -2 O © 0N O OO0 WOV -2 O © 0 NO O WD 2 O © 00 NO O OWNDN = O © 0N O b WO NV = O

CS 202,
Handout 11

1.

User—level threads and swtch ()

Spring 2024
(Class 17)

We’ll study this in the context of user-level threads.
Per—thread state in thread control block:

typedef struct tcb {
unsigned long saved_rsp;
char *t_stack;
/* .. %/
b

/* Stack pointer of thread */
/* Bottom of thread’s stack */

higher 1

Machine—-dependent thread initialization function:

void thread_init(tcb **t, void (*fn) (void *), void *arqg);

Machine—dependent thread-switch function:
void swtch(tcb *current, tcb *next);
Implementation of swtch(current, next):

gcc x86-64 calling convention:
on entering swtch():

register %rdi holds first argument to the function ("current")
register %rsi holds second argument to the function ("next")

Save call-preserved (aka "callee-saved")
pushg %rbp
pushg %rbx
pushg 3srl2
pushg %rl3
pushg %rl4

pushg %rld

regs of ’'current’

store old stack pointer, for when we swtch() back to "current" later

movg %$rsp, (%rdi) # Srdi->saved_rsp = Srspsave the cl
movqg (%rsi), %rsp # %rsp = %rsi—>saved_rsploadsther

Restore call-preserved (aka "callee-saved") regs of ’"next’
popg %rld
popg srl4
popg %rl3
popg %srl2
popg %rbx
popdg ‘srbp
from where "next"

Resume execution, was when it last entered swtch ()

ret

nem address because stack grows down

rrent stack pointer (%rsp) to memory (%rdi, first args) where it can be retrieved later
ew thread stack pointer (%rsp) to the memory location %t rsi points to (second args)

Context Switching tor user-level threading

Switching the registers swtch() does the job

swtch() is called by yield()

55
56 2. Example use of swtch(): the yield() call.
57

58 A thread is going about its business and decides that it’s executed for
59 long enough. So it calls yield(). Conceptually, the overall system needs
60 to now choose another thread, and run it:

61

62 void yield() {

63

64 tcbhb* next = pick_next_thread(); /* get a runnable thread */

65 tcb* current = get_current_thread();

66

67 swtch (current, next);

68

69 /* when ’'current’ is later rescheduled, it starts from here */

70 }

71
72 3. How do context switches interact with I/0 calls?
73

74 This assumes a user—-level threading package.

75

76 The thread calls something like "fake_blocking_read()". This looks
77 to the _thread_ as though the call blocks, but in reality,
78 is not blocking:

79

80 int fake_blocking read(int fd, char* buf, int num) {

81

82 int nread = -1;

83

84 while (nread == -1) {

85

86 /* this is a non-blocking read() syscall */

87 nread = read(fd, buf, num);

88

89 if (nread == -1 && errno == EAGAIN) {

90 /*

91 * read would block. so let another thread run
92 * and try agailn later (next time through the
93 * loop) .

94 */

95 yield();

96 }

97 }

98

99 return nread;

100 }
101

the call

Used when a thread voluntarily gives up CPU

Context Switching tor user-level threading

swtch() does the job
Switching the registers

swtch() is called by yield()

yield() is called by any thread that couldn’t make further progress

Context Switches in WeensyOS

Hardware
saves "trap frame”, containing Kernel (Assembly interrupt handler)
Interrupt occurs %rip, %rsp, %etlags (processor tlags), etc. Moving the stack pointer into %rdi to

on the kernel’s stack at a well-known prepare for the C exception() call

place in kernel memory

Kernel (exception)
“brute force structure copy” each tield of

Kernel (interrupt

handler) Kernel (interrupt

Kernel
(exception_return(&p>p_registers))
set %rsp to &p>p_registers (in %rdi)

pop the saved registers back into the CPU
add 15 to skip past saved codes
%rsp:"“trap frame” when trap happens
issue 1retq

handler)

decide to switch to handling the interrupt

another process

trap frame from kernel stack to the
process’s PCB in kernel memory

Hardware (iretq)
restore the original %rip, %rsp, other

> Donel
saved state

return 1o user space

mmap()

fd = open (pathname, mode) What is “fd”?
write(fd, buf, sz) , , o
read(fd, buf, sz) indexes into a table maintained by the kernel on behalf of the process

map the specitied open file (fd) into a region of my virtual memory (close to
void* mmap(void* addr,

size_t len, int prot,
int flags, int fd,

add, or at a kernel-selected place if addr is 0), and return pointer to it.

off_t offset) loads and stores to addr[x] are equivalent to reading and writing to the file at
B offset + x
........................... a
,,, ren briee
... | Normal Memory:
T < (Of:;:;;s Process Memory < Swap File (default backing store)
1en bYteS < ... Chosen by kernel)
offset \) With mmap():
(bytes) Process Memory < Your Specified File (custom backing store)
0 0
Disk file specified by Process virtual memory

file descriptor £d4

32

Example of mmap Usage

Copying a file to stdout without transferring
data to user space

Reading big files

Shared data structures (when flag is
MAP_SHARED)

File-based data structures

Question: how does the OS ensure that it's
only writing back moditied pages?

next slide

Let OS handle paging naturally, no need to manual chunk the file

Shared memory lives in the same physical memory
Useful for inter-process communication, shared caches, etc.

Database

Dirty bit
(it is set by the hardware when write occurs,
OS only write back pages with dirty bit set)

Mar 26, 24 22:43 copyout.c

#$include <fcntl.h>
#include <stdio.h>

$include <stdlib.h> Copying a file to stdout, the naive way:

#include <sys/mman.h>
#include <sys/stat.h> . .
#include <sys/types.h> int rc,

#include <unistd.h> char bUf[256] ,
void mmapcopy (int fd, int size); int fd Open("-);

while ((rc = read(fd, buf, sizeof(buf))!=-1) {
(1, buf, rc);

© 00 N O O & WO DN =

—_
- O

int main(int argc, char **argv) { .
struct stat stat; write
int f£d; }

—_— ok
A WO N

/* Check for required cmd line arg */
if (argc !'= 2) {
printf ("usage: %s <filename>\n", argv([0]);
exit (0) ;
}

N = A A @A a
O © 0 N O O

/* Copy input file to stdout */
if ((fd = open(argv[1l], O_RDONLY, 0)) < 0)
perror ("open") ;

NN NN
A WO N =

fstat (fd, &stat); get files size using fstat
4 ’
mmapcopy (fd, stat.st_size);

N NN
N OO O

close (£d) ;

N N
© o

return 0O;

}

W W W
N = O

void mmapcopy (int f£d, int size) {

W W
A~ O

/* Ptr to memory mapped area */
char *bufp;

W W W
N O O

bufp = mmap (NULL, size, PROT_READ, MAP_PRIVATE, fd, 0);

A W W
o © o

write (STDOUT_FILENO, bufp, size); write mapped memory to stdout

I
—

return;

B
W N
—

How does mmap work, internally?

Process VA Buffer Cache (in RAM) Disk

Initial mmap call laddr] (empty) m

First access 'addr]
Page Load - [Datal
Page fault
After page fault handled
[addr] - Page frame [Datal

What happens when buffter cache eviction?

struct reverse_mapping {
physical_page_t *phys_page;
struct mapping_entry {
process_t *process;
void *virtual_address;
struct mapping_entry *next;
} *mappings;

b
When evicting page 0x1000:
Physical Page 0x1000 is mapped by: 1.Look up reverse mapping
- Process A at VA 0x40000000 2.For each (process, VA) pair:
- Process B at VA 0x50000000 1.Find process's page table
2.Invalidate VA entry
Reverse Mapping Entry: 3.Send TLB shootdown if needed
’hysPage[0x1000] — [(A, 0x40000000), (B, 0x50000000)] 3.Write page to disk if dirty

— 4.Free physical frame

