
CS202 (003): Operating Systems
Context switches, user-level threading

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last Time

User-level Threading

Kernel-level Threading

Kernel directly manage the threads

Multiple threads within the same process share the same %cr3 value
(which points to a page table, meaning threads share the same memory space)

Kernel threads are always preemptive!

User-level Threading

Managed in the user space by a threading library — kernel only sees a single process

Threading package is responsible for:
 Maintaining TCBs

Make a new stack for each new thread
Scheduling

User-level threading can be non-preemptive/preemptive

Context Switching for user-level threading
Cooperative multithreading

a context switch takes place only at well-defined points:
when the thread calls yield() and when the thread would

block on I/O.

Preemptive multithreading

How to arrange for package to get interrupted?
Signals!

Deliver a periodic timer interrupt or signal to a
thread scheduler [setitimer()].

When it gets its interrupt, swap out the thread,
run another one

Drawbacks: add complexity (without much gain)

Benefits: performance (maybe?)

Not commonly used in production systems

Idea: signal as abstracting interrupt (hardware feature)
Hardware has interrupts

OS provides signals
Programs use signals

 Remark: OS’s job is to give a user-space process the illusion that
it's running on something like a machine, by creating abstractions

Context Switching

Switching the view of memory (%cr3)

Switching the registers

Context Switching for user-level threading

Switching the registers swtch() does the job

1 CS 202, Spring 2024
2 Handout 11 (Class 17)
3
4 1. User−level threads and swtch()
5
6 We’ll study this in the context of user−level threads.
7
8 Per−thread state in thread control block:
9

10 typedef struct tcb {
11 unsigned long saved_rsp; /* Stack pointer of thread */
12 char *t_stack; /* Bottom of thread’s stack */
13 /* ... */
14 };
15
16 Machine−dependent thread initialization function:
17
18 void thread_init(tcb **t, void (*fn) (void *), void *arg);
19
20 Machine−dependent thread−switch function:
21
22 void swtch(tcb *current, tcb *next);
23
24 Implementation of swtch(current, next):
25
26 # gcc x86−64 calling convention:
27 # on entering swtch():
28 # register %rdi holds first argument to the function ("current")
29 # register %rsi holds second argument to the function ("next")
30
31 # Save call−preserved (aka "callee−saved") regs of ’current’
32 pushq %rbp
33 pushq %rbx
34 pushq %r12
35 pushq %r13
36 pushq %r14
37 pushq %r15
38
39 # store old stack pointer, for when we swtch() back to "current" later
40 movq %rsp, (%rdi) # %rdi−>saved_rsp = %rsp
41 movq (%rsi), %rsp # %rsp = %rsi−>saved_rsp
42
43 # Restore call−preserved (aka "callee−saved") regs of ’next’
44 popq %r15
45 popq %r14
46 popq %r13
47 popq %r12
48 popq %rbx
49 popq %rbp
50
51 # Resume execution, from where "next" was when it last entered swtch()
52 ret
53
54

Apr 01, 24 22:32 Page 1/2swtch.txt
55
56 2. Example use of swtch(): the yield() call.
57
58 A thread is going about its business and decides that it’s executed for
59 long enough. So it calls yield(). Conceptually, the overall system needs
60 to now choose another thread, and run it:
61
62 void yield() {
63
64 tcb* next = pick_next_thread(); /* get a runnable thread */
65 tcb* current = get_current_thread();
66
67 swtch(current, next);
68
69 /* when ’current’ is later rescheduled, it starts from here */
70 }
71
72 3. How do context switches interact with I/O calls?
73
74 This assumes a user−level threading package.
75
76 The thread calls something like "fake_blocking_read()". This looks
77 to the _thread_ as though the call blocks, but in reality, the call
78 is not blocking:
79
80 int fake_blocking_read(int fd, char* buf, int num) {
81
82 int nread = −1;
83
84 while (nread == −1) {
85
86 /* this is a non−blocking read() syscall */
87 nread = read(fd, buf, num);
88
89 if (nread == −1 && errno == EAGAIN) {
90 /*
91 * read would block. so let another thread run
92 * and try again later (next time through the
93 * loop).
94 */
95 yield();
96 }
97 }
98
99 return nread;
100 }
101
102
103
104
105

Apr 01, 24 22:32 Page 2/2swtch.txt

Printed by Michael Walfish

Monday April 01, 2024 1/1swtch.txt

higher mem address because stack grows down

save the current stack pointer (%rsp) to memory (%rdi, first args) where it can be retrieved later
loads the new thread stack pointer (%rsp) to the memory location %rsi points to (second args)

Context Switching for user-level threading

Switching the registers swtch() does the job

swtch() is called by yield()

1 CS 202, Spring 2024
2 Handout 11 (Class 17)
3
4 1. User−level threads and swtch()
5
6 We’ll study this in the context of user−level threads.
7
8 Per−thread state in thread control block:
9

10 typedef struct tcb {
11 unsigned long saved_rsp; /* Stack pointer of thread */
12 char *t_stack; /* Bottom of thread’s stack */
13 /* ... */
14 };
15
16 Machine−dependent thread initialization function:
17
18 void thread_init(tcb **t, void (*fn) (void *), void *arg);
19
20 Machine−dependent thread−switch function:
21
22 void swtch(tcb *current, tcb *next);
23
24 Implementation of swtch(current, next):
25
26 # gcc x86−64 calling convention:
27 # on entering swtch():
28 # register %rdi holds first argument to the function ("current")
29 # register %rsi holds second argument to the function ("next")
30
31 # Save call−preserved (aka "callee−saved") regs of ’current’
32 pushq %rbp
33 pushq %rbx
34 pushq %r12
35 pushq %r13
36 pushq %r14
37 pushq %r15
38
39 # store old stack pointer, for when we swtch() back to "current" later
40 movq %rsp, (%rdi) # %rdi−>saved_rsp = %rsp
41 movq (%rsi), %rsp # %rsp = %rsi−>saved_rsp
42
43 # Restore call−preserved (aka "callee−saved") regs of ’next’
44 popq %r15
45 popq %r14
46 popq %r13
47 popq %r12
48 popq %rbx
49 popq %rbp
50
51 # Resume execution, from where "next" was when it last entered swtch()
52 ret
53
54

Apr 01, 24 22:32 Page 1/2swtch.txt
55
56 2. Example use of swtch(): the yield() call.
57
58 A thread is going about its business and decides that it’s executed for
59 long enough. So it calls yield(). Conceptually, the overall system needs
60 to now choose another thread, and run it:
61
62 void yield() {
63
64 tcb* next = pick_next_thread(); /* get a runnable thread */
65 tcb* current = get_current_thread();
66
67 swtch(current, next);
68
69 /* when ’current’ is later rescheduled, it starts from here */
70 }
71
72 3. How do context switches interact with I/O calls?
73
74 This assumes a user−level threading package.
75
76 The thread calls something like "fake_blocking_read()". This looks
77 to the _thread_ as though the call blocks, but in reality, the call
78 is not blocking:
79
80 int fake_blocking_read(int fd, char* buf, int num) {
81
82 int nread = −1;
83
84 while (nread == −1) {
85
86 /* this is a non−blocking read() syscall */
87 nread = read(fd, buf, num);
88
89 if (nread == −1 && errno == EAGAIN) {
90 /*
91 * read would block. so let another thread run
92 * and try again later (next time through the
93 * loop).
94 */
95 yield();
96 }
97 }
98
99 return nread;
100 }
101
102
103
104
105

Apr 01, 24 22:32 Page 2/2swtch.txt

Printed by Michael Walfish

Monday April 01, 2024 1/1swtch.txt

Used when a thread voluntarily gives up CPU

Context Switching for user-level threading

Switching the registers
swtch() does the job

swtch() is called by yield()

yield() is called by any thread that couldn’t make further progress

Context Switches in WeensyOS

Interrupt occurs

Hardware
saves “trap frame”, containing

%rip, %rsp, %eflags (processor flags), etc.
on the kernel’s stack at a well-known

place in kernel memory

Kernel (Assembly interrupt handler)
Moving the stack pointer into %rdi to
prepare for the C exception() call

Kernel (exception)
“brute force structure copy” each field of

trap frame from kernel stack to the
process’s PCB in kernel memory

Kernel (interrupt
handler)

handling the interrupt

Kernel (interrupt
handler)

decide to switch to
another process

Kernel
(exception_return(&p>p_registers))

set %rsp to &p>p_registers (in %rdi)
pop the saved registers back into the CPU

add 15 to skip past saved codes
%rsp:“trap frame” when trap happens

issue iretq

Hardware (iretq)
restore the original %rip, %rsp, other

saved state
return to user space

Done!

mmap()
fd = open (pathname, mode)
write(fd, buf, sz)
read(fd, buf, sz)

What is “fd”?
indexes into a table maintained by the kernel on behalf of the process

void* mmap(void* addr,
size_t len, int prot,
int flags, int fd,
off_t offset)

map the specified open file (fd) into a region of my virtual memory (close to
add, or at a kernel-selected place if addr is 0), and return pointer to it.

loads and stores to addr[x] are equivalent to reading and writing to the file at
offset + x

32

User-Level Memory Mapping
void *mmap(void *start, int len,

int prot, int flags, int fd, int offset)

len bytes

start
(or address

chosen by kernel)

Process virtual memoryDisk file specified by
file descriptor fd

len bytes

offset
(bytes)

0 0

Normal Memory:
Process Memory ↔ Swap File (default backing store)

With mmap():
Process Memory ↔ Your Specified File (custom backing store)

Example of mmap Usage

Copying a file to stdout without transferring
data to user space

Reading big files

Shared data structures (when flag is
MAP_SHARED)

File-based data structures

Let OS handle paging naturally, no need to manual chunk the file

Shared memory lives in the same physical memory

Useful for inter-process communication, shared caches, etc.

Database

Question: how does the OS ensure that it's
only writing back modified pages?

Dirty bit

(it is set by the hardware when write occurs,

OS only write back pages with dirty bit set)

next slide

1 #include <fcntl.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <sys/mman.h>
5 #include <sys/stat.h>
6 #include <sys/types.h>
7 #include <unistd.h>
8
9 void mmapcopy(int fd, int size);

10
11 int main(int argc, char **argv) {
12 struct stat stat;
13 int fd;
14
15 /* Check for required cmd line arg */
16 if (argc != 2) {
17 printf("usage: %s <filename>\n", argv[0]);
18 exit(0);
19 }
20
21 /* Copy input file to stdout */
22 if ((fd = open(argv[1], O_RDONLY, 0)) < 0)
23 perror("open");
24
25 fstat(fd, &stat);
26 mmapcopy(fd, stat.st_size);
27
28 close(fd);
29
30 return 0;
31 }
32
33 void mmapcopy(int fd, int size) {
34
35 /* Ptr to memory mapped area */
36 char *bufp;
37
38 bufp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd, 0);
39
40 write(STDOUT_FILENO, bufp, size);
41
42 return;
43 }

Mar 26, 24 22:43 Page 1/1copyout.c

Printed by Michael Walfish

Tuesday March 26, 2024 1/1copyout.c

get files size using fstat

write mapped memory to stdout

int rc;
char buf[256];
int fd = open(…);
while ((rc = read(fd, buf, sizeof(buf))!=-1) {
write(1, buf, rc);

}

Copying a file to stdout, the naive way:

How does mmap work, internally?

Initial mmap call [addr]

Process VA

(empty)

Buffer Cache (in RAM)

[Data]

Disk

First access
[addr]

Page fault Page Load [Data]

After page fault handled
[addr] Page frame [Data]

What happens when buffer cache eviction?

struct reverse_mapping {
 physical_page_t *phys_page;
 struct mapping_entry {
 process_t *process;
 void *virtual_address;
 struct mapping_entry *next;
 } *mappings;
};

When evicting page 0x1000:
1.Look up reverse mapping
2.For each (process, VA) pair:

1.Find process's page table
2.Invalidate VA entry
3.Send TLB shootdown if needed

3.Write page to disk if dirty
4.Free physical frame

Physical Page 0x1000 is mapped by:
- Process A at VA 0x40000000
- Process B at VA 0x50000000

Reverse Mapping Entry:
PhysPage[0x1000] → [(A, 0x40000000), (B, 0x50000000)]

