
CS202 (003): Operating Systems 
I/O

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202



Last Time



Replacement policy

FIFO MIN (optimal) LRU

throw out the oldest
throw away the entry that won’t 

be used for the longest time
throw out the least 

recently used

It approximates OPT when: 
principle of temporal locality 

holds strongly

Pretty decent! 



Implementing LRU

In OS, it doubles the memory traffic  
(since after every reference, have to move some structure to the head of some list)

In hardware, it’s a lot of work to timestamp each reference and keep the list ordered

Implementing LRU in OS/hardware is a lot of pain!



Approximating LRU

https://www.cs.cornell.edu/courses/cs4410/2018sp/schedule/slides/08-vm.pdf

“Second-chance” algorithm



Generalizing CLOCK: Nth Chance
•With each page, OS maintains a counter to indicate the number of sweeps that page has gone through. 
• On page fault, OS checks accessed bit: 
◦ If 1, then clear it, and also clear the counter. 
◦ If 0, then increment the counter; if count == N, replace page.

Large N implies better approximation to LRU:  
e.g., N = 1000 is a very good LRU approximation.  
However, a large N implies more work by the OS before a page can be replaced.

N = 1 implies the default clock algorithm.
https://www.cse.iitd.ernet.in/~sbansal/os/lec/l30.html#:~:text=Nth%20chance%3A%20The%20clock%20algorithm,N%20chances%20before%20evicting%20it.

Decent approximations to LRU, assuming that past is a good predictor of the future



Thrashing

Process requires more memory than the system has

Each time a page is brought in, another page, whose contents will soon 
be referenced, is thrown out

A program touches 50 pages (each equally likely) but only have 40 physical page frames

If we have enough physical pages, 100ns/ref 
If we have too few physical pages, assuming every 5th reference leads to a page fault, then: 

4 ref * 100 ns + 1 page fault * 10ms for disk I/O 
This lead to 5 refs per (10ms + 400ns) ~ 2ms/ref = 20,000x slowdown!



Thrashing

Process requires more memory than the system has

Each time a page is brought in, another page, whose contents will soon 
be referenced, is thrown out

What we want: virtual memory the size of disk with access time the speed of physical memory

What we have: memory with access time roughly at the same magnitude as disk access

Note: this issue is not limited to page access, but we are discussing this issue in the context of page access



Thrashing - what are the causes?

What we want: virtual memory the size of disk with access time the speed of physical memory

What we have: memory with access time roughly at the same magnitude as disk access

process don’t reuse memory (no temporal locality) 
OR 

process reuses memory but the memory that is absorbing most of the accesses doesn’t fit

Each processes fit the memory individually, but too much to fit for all processes in the system!



Thrashing - What do we do?

Each processes fit the memory individually, but too much to fit for all processes in the system!

Working Set

The pages a process has touched over 
some trailing window of time 

Only run a set of processes s.t. the union 
of their working sets fit in memory

Page fault frequency

Track the metric  
(# page faults/instructions executed) 

If that thing rises above a threshold, and 
there is not enough memory on the 

system, swap out the process



I/O Architecture at a high-level
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CPU(kernel)/Device Interaction
Mechanics of Communication

Explicit I/O instructions outb, inb, outw, inw WeesyOS boot.c (handout)



10 I/O DEVICES

Control Register:
Address 0x3F6 = 0x08 (0000 1RE0): R=reset,

E=0 means "enable interrupt"

Command Block Registers:
Address 0x1F0 = Data Port
Address 0x1F1 = Error
Address 0x1F2 = Sector Count
Address 0x1F3 = LBA low byte
Address 0x1F4 = LBA mid byte
Address 0x1F5 = LBA hi byte
Address 0x1F6 = 1B1D TOP4LBA: B=LBA, D=drive
Address 0x1F7 = Command/status

Status Register (Address 0x1F7):
7 6 5 4 3 2 1 0

BUSY READY FAULT SEEK DRQ CORR IDDEX ERROR

Error Register (Address 0x1F1): (check when ERROR==1)
7 6 5 4 3 2 1 0

BBK UNC MC IDNF MCR ABRT T0NF AMNF

BBK = Bad Block
UNC = Uncorrectable data error
MC = Media Changed
IDNF = ID mark Not Found
MCR = Media Change Requested
ABRT = Command aborted
T0NF = Track 0 Not Found
AMNF = Address Mark Not Found

Figure 36.5: The IDE Interface

An IDE disk presents a simple interface to the system, consisting of
four types of register: control, command block, status, and error. These
registers are available by reading or writing to specific “I/O addresses”
(such as 0x3F6 below) using (on x86) the in and out I/O instructions.

The basic protocol to interact with the device is as follows, assuming
it has already been initialized.

• Wait for drive to be ready. Read Status Register (0x1F7) until drive
is READY and not BUSY.

• Write parameters to command registers. Write the sector count,
logical block address (LBA) of the sectors to be accessed, and drive
number (master=0x00 or slave=0x10, as IDE permits just two drives)
to command registers (0x1F2-0x1F6).

• Start the I/O. Write READ|WRITE command to command register
(0x1F7).

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG

LBA: Linear block address (28-bit in the handout) 

describes storage locations 
each sector gets a unique number starting from 0

each register stores 8-bit data

Status is read-only 
Command is used to add instructions to the disk

https://www.rfcandy.biz/communication/ide.html

(Integrated Device Electronics): connection between a bus on the motherboard and disk storage 



12 I/O DEVICES

static int ide_wait_ready() {

while (((int r = inb(0x1f7)) & IDE_BSY) || !(r & IDE_DRDY))

; // loop until drive isn’t busy

// return -1 on error, or 0 otherwise

}

static void ide_start_request(struct buf *b) {

ide_wait_ready();

outb(0x3f6, 0); // generate interrupt

outb(0x1f2, 1); // how many sectors?

outb(0x1f3, b->sector & 0xff); // LBA goes here ...

outb(0x1f4, (b->sector >> 8) & 0xff); // ... and here

outb(0x1f5, (b->sector >> 16) & 0xff); // ... and here!

outb(0x1f6, 0xe0 | ((b->dev&1)<<4) | ((b->sector>>24)&0x0f));

if(b->flags & B_DIRTY){

outb(0x1f7, IDE_CMD_WRITE); // this is a WRITE

outsl(0x1f0, b->data, 512/4); // transfer data too!

} else {

outb(0x1f7, IDE_CMD_READ); // this is a READ (no data)

}

}

void ide_rw(struct buf *b) {

acquire(&ide_lock);

for (struct buf **pp = &ide_queue; *pp; pp=&(*pp)->qnext)

; // walk queue

*pp = b; // add request to end

if (ide_queue == b) // if q is empty

ide_start_request(b); // send req to disk

while ((b->flags & (B_VALID|B_DIRTY)) != B_VALID)

sleep(b, &ide_lock); // wait for completion

release(&ide_lock);

}

void ide_intr() {

struct buf *b;

acquire(&ide_lock);

if (!(b->flags & B_DIRTY) && ide_wait_ready() >= 0)

insl(0x1f0, b->data, 512/4); // if READ: get data

b->flags |= B_VALID;

b->flags &= ˜B_DIRTY;

wakeup(b); // wake waiting process

if ((ide_queue = b->qnext) != 0) // start next request

ide_start_request(ide_queue); // (if one exists)

release(&ide_lock);

}

Figure 36.6: The xv6 IDE Disk Driver (Simplified)

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG

handle read/write request

handle disk interrupt when operation complete

read: data is read and valid bit is set

write: data is written and dirty bit is cleaned



CPU(kernel)/Device Interaction
Mechanics of Communication

Explicit I/O instructions outb, inb, outw, inw WeesyOS boot.c (handout)

keyboard_readc() reading keyboard input (handout)



CPU(kernel)/Device Interaction
Mechanics of Communication

Explicit I/O instructions outb, inb, outw, inw WeesyOS boot.c (handout)

keyboard_readc() reading keyboard input (handout)

console_show_cursor() setting blinking cursor (handout)



CPU(kernel)/Device Interaction
Mechanics of Communication

Memory-mapped I/O 

Most of the physical address space contains regular RAM 
However, the lower memory addresses (650K-1MB) are 

special - they don't refer to actual RAM 

WeesyOS console printing (handout)



CPU(kernel)/Device Interaction
Mechanics of Communication

Explicit I/O instructions 

Memory-mapped I/O 

Interrupts



CPU(kernel)/Device Interaction
Mechanics of Communication

Explicit I/O instructions 

Memory-mapped I/O 

Interrupts

Through memory
Both CPU and the device see the same memory, so they 

can use shared memory to communicate. (eg. DMA)



Polling vs. Interrupt (vs. busy waiting)

Busy Waiting

while (!device_is_ready()) {  
  // CPU is stuck here, 
repeatedly checking  
  // Consuming CPU cycles doing 
nothing useful  
}

Simple but inefficient 
CPU stuck here running at full speed



Polling vs. Interrupt (vs. busy waiting)

Busy Waiting

while (!device_is_ready()) {  
  // CPU is stuck here, 
repeatedly checking  
  // Consuming CPU cycles doing 
nothing useful  
}

Polling

void poll_device() {  
while (1) { 

 if (device_is_ready())  
{ process_device_data(); }  

// Sleep/delay for a set 
interval  
sleep_ms(100); // Check every 
100ms  

}  
}

System checks device status at 
regular intervals  

Lower CPU usage



Polling vs. Interrupt (vs. busy waiting)

Busy Waiting

while (!device_is_ready()) {  
  // CPU is stuck here, 
repeatedly checking  
  // Consuming CPU cycles doing 
nothing useful  
}

Interrupts

// CPU sets up interrupt handler  
set_interrupt_handler 

(device_interrupt_handler);  

// CPU goes on to do other useful work  
do_other_work();  

// When device needs attention,  
it triggers interrupt  
// and the handler runs automatically  
void device_interrupt_handler() {  

// Handle the device's needs  
process_device_data();  

}

Polling

void poll_device() {  
while (1) { 

 if (device_is_ready())  
{ process_device_data(); }  

// Sleep/delay for a set 
interval  
sleep_ms(100); // Check every 
100ms  

}  
}

Most sophisticated approach 
If interrupt rate is high, we can get livelock



Programmed I/O vs. DMA (Direct memory access)

Programmed I/O

CPU writes data directly to device, and 
reads data directly from device.



Programmed I/O vs. DMA (Direct memory access)

Programmed I/O

CPU writes data directly to device, and 
reads data directly from device.

DMA

CPU places some buffers in main memory. 

Tells device where the buffers are  
Then "pokes" the device by writing to register 

Then device uses DMA to read or write the  
The CPU can poll to see if the DMA completed (or the 

device can interrupt the CPU when done).

CPU don’t have to constantly deal with small amount 
of data transfer, the device can write the contents 

straight into memory



Software architecture: device drivers 

Device drivers act as a bridge between hardware devices and the operating system kernel



Software architecture: device drivers 

Device drivers act as a bridge between hardware devices and the operating system kernel

reset(): Initializes or resets the device 
ioctl(): Provides device-specific controls 
read()/write(): Standard data transfer operations 
handle_interrupt(): Manages hardware interrupts



Software architecture: device drivers 

Device drivers act as a bridge between hardware devices and the operating system kernel

reset(): Initializes or resets the device 
ioctl(): Provides device-specific controls 
read()/write(): Standard data transfer operations 
handle_interrupt(): Manages hardware interrupts

Advantages: don’t have to worry about the specific hardware implementation

Issues: 
1. Device drivers is per-OS and per-device  (hard part cannot be reused) 
2. Bugs in device drivers often bring down the entire machine

Example interface



Synchronous vs. Asynchronous I/O

Synchronous I/O

When a process makes a system call (like read() or write()), 
it blocks (suspends) until the operation completes

The process enters a sleep state and cannot 
execute other codes

Control returns to process after operation finishes

Code is often more readable, but it is slow



Synchronous vs. Asynchronous I/O

Synchronous I/O

When a process makes a system call (like read() or write()), 
it blocks (suspends) until the operation completes

The process enters a sleep state and cannot 
execute other codes

Control returns to process after operation finishes

Async I/O

System calls return immediately, even 
if the operation isn’t completed

Instead of blocking, the call returns a status 
indicating what would have happened

Check through polling or interrupt

Need to use platform-specific extensions to POSIX to 
do async I/O for files 


