CS202 (003): Operating Systems
/O

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last Time

FIFO

throw out the oldest

Replacement policy

MIN (optimal)

throw away the entry that won't
be used for the longest time

LRU

throw out the |least

recently used

Pretty decent!

't approximates OP’

- when:

orinciple of tempora

locality

holds strongly

Implementing LRU

In OS, it doubles the memory traftic
(since after every reference, have to move some structure to the head of some list)

In hardware, it's a lot of work to timestamp each reference and keep the list ordered

Implementing LRU in OS/hardware is a lot of pain!

Approximating LRU

ClOCk AlgOrIthmZ NOt Recently Used “Second-chance” algorithm
Approximating LRU* Page Frames

0-use:0

Periodically, sweep X e
through all pages
. Used? Clear use bi e

» Unused? reclaim
« update core map
e invalidate page table
» write back if dirty
« TLB shootdown

e add to free list
(*yes, LRU was already an approximation...)

4-use:0

D-use:

- B-use.0 7-use:l

34

https://www.cs.cornell.edu/courses/cs4410/2018sp/schedule/slides/08-vm.pdf

Generalizing CLOCK: Nth Chance

e With each page, OS maintains a counter to indicate the number of sweeps that page has gone through.
e On page fault, OS checks accessed bit:

o |t 1, then clear it, and also clear the counter.

o It 0, then increment the counter; if count == N, replace page.

Large N implies better approximation to LRU:

e.g., N =1000 is a very good LRU approximation.
However, a large N implies more work by the OS betore a page can be replaced.

Decent approximations to LRU, assuming that past is a good predictor of the future

N = 1 implies the default clock algorithm.

https://www.cse.iitd.ernet.in/~sbansal/os/lec/I30.html#:~:text=Nth%20chance % 3A%20The%20clock % 20algorithm,N%20chances%20before % 20evicting%20it.

Thrashing

Process requires more memory than the system has

Each time a page is brought in, another page, whose contents will soon
be referenced, is thrown out

A program touches 50 pages (each equally likely) but only have 40 physical page frames

't we have enough physical pages, 100ns/ref

If we have too tfew physical pages, assuming every 5th reterence leads to a page fault, then:

4 ret * 100 ns + 1 page fault * 10ms for disk I1/O
This lead to 5 refs per (10ms + 400ns) ~ 2ms/ret = 20,000x slowdown!

Thrashing

Process requires more memory than the system has

Each time a page is brought in, another page, whose contents will soon
be referenced, is thrown out

What we want: virtual memory the size of disk with access time the speed ot physical memory

What we have: memory with access time roughly at the same magnitude as disk access

Note: this issue is not limited to page access, but we are discussing this issue in the context of page access

Thrashing - what are the causes?

What we want: virtual memory the size of disk with access time the speed of physical memory

What we have: memory with access time roughly at the same magnitude as disk access

process don't reuse memory (no temporal locality)
OR
process reuses memory but the memory that is absorbing most of the accesses doesn't fit

Each processes fit the memory individually, but too much to fit for all processes in the system!

Thrashing - What do we do?

Each processes fit the memory individually, but too much to fit for all processes in the system!

Working Set Page fault frequency

Track the metric

The pages a process has touched over (# page faults/instructions executed)
some trailing window of time

| If that thing rises above a threshold, and

of their working sets fit in memory system, swap out the process

/O Architecture at a high-level

CPU Memory

Graphics

Memory Bus
(proprietary)

General I/O Bus
(e.g., PCI)

JH U E

Textbook (older)

» Peripheral /O Bus
(e.g., SCSI, SATA, USB)

Figure 36.1: Prototypical System Architecture

RAM

Machine

RAM

RAM

.I.I.I.I.I.I.I.II.II.II.I.I.I.I".I.I.I.I.I.I.I.L

L
)
7))
7p)
O
O
@)
Pt

ol

.I.I.II.I.I.I.I.I.I.I.I.II.I.I.I.".I.I.I.I.I.I.I.L

RAM

.I.I.I.I.I.I.I.II.I.I.I.I.I.I.I.In.I.I.I.II.I.I.I.

Newer

CPUene/Device Interaction

Mechanics of Communication

Explicit /0 instructions outb, inb, outw, inw WeesyOS boot.c (handout)

: | | LBA: Linear block address esuitin the handous
ontrol Register:

Address 0x3F6 = 0x08 (0000 1REOQ): R=reset, describes storage locations
E=0 means "enable 1nterrupt"

each sector gets a unigue number starting from O

Command Block Registers: each register stores 8-bit data
Address 0x1F0O = Data Port
Address 0Ox1F1 = Error
Address 0x1F2 Sector Count
Address 0x1F3 LBA low byte
Address 0x1F4 LBA mid byte
Address 0x1F5 LBA hi Dbyte
Address 0x1F6 1B1D TOP4LBA: B=LBA, D=drive
Address 0x1F7 = Command/status Status is read-on|y

Status Register (Address 0x1F7): Command is used to add instructions to the disk

'/ 6 o) 4 3 2 1 0
BUSY READY FAULT SEEK DRQ CORR IDDEX ERROR

Error Register (Address 0x1F1l): (check when ERROR==1)
7 6 5 4 3 2 1 0
BBK UNC MC IDNF MCR ABRT TONEF AMNFE
BBK = Bad Block
UNC = Uncorrectable data error
MC = Media Changed
IDNF = ID mark Not Found
MCR = Media Change Requested
ABRT = Command aborted
TONEF = Track 0 Not Found

AMNF = Address Mark Not Found

Figure 36.5: The IDE Interface (Integrated Device Electronics): connection between a bus on the motherboard and disk storage

https://www.rfcandy.biz/communication/ide.html

static int ide_wait_ready () {
while (((int r = inb(0x1f7)) & IDE_BSY) || !(r & IDE_DRDY))
; // loop until drive isn’t busy
// return -1 on error, or 0 otherwise

static void i1de_start_request (struct buf xb) {
ide_wait_ready () ;

outb (0x3f6, 0); // generate interrupt
outb (0x1f2, 1); // how many sectors?
outb (0x1£f3, b->sector & 0xff); // LBA goes here
outb (0x1f4, (b->sector >> 8) & 0Oxff); // ... and here
outb (0x1£f5, (b->sector >> 16) & Oxff); // ... and here!
outb (0x1f6, O0xelO | ((b—>devé&l)<<4) | ((b—->sector>>24)&0x0£f));
if (b—->flags & B_DIRTY) {
outb (0x1f7, IDE_CMD_WRITE) ; // this is a WRITE
outsl (0x1f0, b->data, 512/4); // transfer data too!
} else {
outb (0x1f7, IDE_CMD_READ); // this is a READ (no data)
}
}
void ide_rw(struct buf *b) ({ handle read/write request

acquire (&1de_1lock);
for (struct buf xxpp = &ide_qgqueue; *pp; ppr=& (*pp)-—>gnext)

; // walk queue . _ o

*pp = b; // add request to end read: data is read and valid bit is set

if (ide_queue == b) // if q is empty write: data is written and dirty bit is cleaned
ide_start_request (b); // send req to disk

while ((b->flags & (B_VALID|B_DIRTY)) != B_VALID)
sleep (b, &ide_lock); // wait for completion

release (&1de_lock) ;

void ide_intr () { handle disk interrupt when operation complete
struct buf *b;

acquilre (&1de_lock);

1if (! (b->flags & B_DIRTY) && ide_wait_ready () >= 0)

insl (0x1f0, b->data, 512/4); // 1f READ: get data
b->flags |= B_VALID;
b->flags &= "B_DIRTY;
wakeup (b) ; // wake waiting process
if ((ide_queue = b->gnext) != 0) // start next request

ide_start_request (ide_queue); // (if one exists)
release (&1ide_lock);

Figure 36.6: The xv6 IDE Disk Driver (Simplified)

CPUene/Device Interaction

Mechanics of Communication

Explicit /0 instructions outb, inb, outw, inw WeesyOS boot.c (handout)

keyboard_readc() reading keyboard input (handout)

CPUene/Device Interaction

Mechanics of Communication

Explicit /0 instructions outb, inb, outw, inw WeesyOS boot.c (handout)
keyboard_readc() reading keyboard input (handout)

console_show_cursor() setting blinking cursor (handout)

CPUene/Device Interaction

Mechanics of Communication

Most of the physical address space contains regular RAM
However, the lower memory addresses (650K-1MB) are

M - d /O
emory-mappe special - they don't refer to actual RAM

WeesyOS console printing (handout)

CPUene/Device Interaction

Mechanics of Communication

Explicit I1/0 instructions
Memory-mapped I/0O

Interrupts

CPUene/Device Interaction

Mechanics of Communication

Explicit I1/0 instructions
Memory-mapped I/0O

Interrupts

Both CPU and the device see the same memory, so they

Through memory can use shared memory to communicate. (eg. DMA)

Polling vs. Interrupt (vs. busy waiting)

Busy Waiting

// CPU 1s stuck here,
repeatedly checking

// Consuming CPU cycles doing
nothing useful

Simple but inefficient
CPU stuck here running at full speea

Polling vs. Interrupt (vs. busy waiting)

Busy Waiting

// CPU 1s stuck here,
repeatedly checking

// Consuming CPU cycles doing
nothing useful

Polling

// Sleep/delay for a set
interval

// Check every
100ms

System checks device status at
reqular intervals
Lower CPU usage

Polling vs. Interrupt (vs. busy waiting)

Busy Waiting Interrupts Polling

// CPU sets up interrupt handler
device_interrupt_handler

// CPU goes on to do other useful work
// CPU 1s stuck here,

repeatedly checking // Sleep/delay for a set

// Consuming CPU cycles doing // When device needs attention, interval
nothing useful 1t triggers interrupt // Check ever
// and the handler runs automatically 100ms y

// Handle the device's needs

Most sophisticated approach
If interrupt rate is high, we can get livelock

PI‘Og rammed I/O VS. DMA (Direct memory access)

Programmed /O

CPU writes data directly to device, and
reads data directly from device.

PI‘Og rammed I/O VS. DMA (Direct memory access)

Programmed /O

CPU writes data directly to device, and
reads data directly from device.

DMA

CPU places some bufters in main memory.

Tel
Then "po

s device where the buffers are

ces" the device by writing to register

"hen device uses DMA to read or write the

The CPU can poll to see it the DMA completed (or the
device can interrupt the CPU when done).

CPU don't have to constantly deal with small amount

of data transfer, the device can write the contents

straight into memory

Software architecture: device drivers

Device drivers act as a bridge between hardware devices and the operating system kernel

Software architecture: device drivers

Device drivers act as a bridge between hardware devices and the operating system kernel

reset(): Initializes or resets the device
ioctl(): Provides device-specific controls
read()/write(): Standard data transfer operations
handle_interrupt(): Manages hardware interrupts

Software architecture: device drivers

Device drivers act as a bridge between hardware devices and the operating system kernel

reset(): Initializes or resets the device

ioct1l(): Provides device-specific controls Example interface
read()/write(): Standard data transfer operations

handle_interrupt(): Manages hardware interrupts

Advantages: don't have to worry about the specific hardware implementation

|lssues:

1. Device drivers is per-OS and per-device (hard part cannot be reuseq)
2. Bugs in device drivers often bring down the entire machine

Synchronous vs. Asynchronous |I/O

Synchronous |I/O

When a process makes a system call (like read() or write()),
it blocks (suspends) until the operation completes

The Process enters a s eep state and cannot

execute other codes

Control returns to process after operation finishes

Code is often more readable, but it is slow

Synchronous vs. Asynchronous |I/O

Synchronous I/0O Async I/O
When a process makes a system call (like read() or write()), System calls return immediately, even
it blocks (suspends) until the operation completes if the operation isn't completed
The process enters a sleep state and cannot Instead of blocking, the call returns a status
execute other codes indicating what would have happened
Control returns to process after operation finishes Check through polling or interrupt

Need to use platform-specific extensions to POSIX to
do async I/O for files

