CS202 (003): Operating Systems
Virtual Memory lll, Weensy OS

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

How to review for midterms?

The scope for midterm: everything we covered so far

Everything means: lectures (up to and including today'’s lecture), handouts, readings, labs (0-2)
Format: (for instance) Multiple Choice, True/False, Short Answers, Coding, ...

Make sure you understand everything we covered, exams will test your understanding.

The past exam questions are on the websites with solutions

Cheatsheet: You may refer to ONE two-sided letter-sized sheet that is written by yourself (No
screenshot allowed).

Lab 4: Weensy OS
(Yes, it is already released)

In Lab 4, you will write a mini OS, WeensyOS,
that implements the virtual memory architecture
and a few important system calls.

Weensy OS structure

look at process.h for
sys_page_alloc() for process allocating memory
Processes (sys_page_alloc is analogous to brk() or mmap() in POSIX)
Files with p-* exception_return() for when returning back into user space

%rax is what the application return value is

look at kernel.h for

process control block (PCB): struct proc
Kernel COde * Process registers, process state

Files with k-* * Process page table - a pointer (kernel virtual address, which is the identical physical address)
* to an L1 page table L1 page table's first entry points to a page table, and so on...

virtual_memory_lookup(): typedef struct physical pageinfo {

lookup a physical page using pagetable INt8_Tt owner; //kernel, reserved, free, pid
int8 t refcount;

} physical pageinfo;

and virtual memory.

virtual _memory_map(): static physical pageinfo pageinfo
map virtual address -> physical address [PAGENUMBER (MEMSIZE PHYSICAL)];

// one physical pageinfo struct per _physical page pageinfo array

Weensy OS Memory Relatea

WeensyOS begins with the kernel and all processes sharing a single address space.

This is defined by the kernel_pagetable.

Kernel's pagetable is identity-mapped: Virtual address X maps to physical address X.
As you work through the project, you will shift processes to use independent address space
where each process can access only a subset of physical memory.

The OS supports 3MB of virtual memory on top of 2MB of physical memory.

(Recall the point of virtualization, from the perspective of the process, it thinks it has 3MB of memory. But in reality, it doesn't.)

Assume page size to be 4KB, each entry in the page table is 64 bit.
How to we support 3MB of virtual memory? How many L4 pagetable do we need?

(2 L4 page tables)

Macro

PAGESIZE

PAGENUMBER(addr)

PAGEADDRESS(pn)

PAGEINDEX(addr, level)

PTE_ADDR(pe)

Weensy OS Macros and Constants

Meaning

Size of a memory page. Equals 4096 (or, equivalently, 1 << 12).

Page number for the page containing addr. Expands to an
expression analogous to addr / PAGESIZE.

The initial address (zeroth byte) in page number pn. Expands to an
expression analogous to pn * PAGESIZE.

The index in the levelth page table for addr. level must be between 0
and 3; 0 returns the level-1 page table index (address bits 39-47),
1 returns the level-2 index (bits 30-38), 2 returns the level-3 index
(bits 21-29), and 3 returns the level-4 index (bits 12-20).

The physical address contained in page table entry pe. Obtained by
masking off the flag bits (setting the low-order 12 bits to zero).

Constant Meaning

KERNEL_START_AD Start of kernel code.
DR

KERNEL_STACK_TO Top of kernel stack. The kernel stack is one page long.
P

console Address of CGA console memory.

PROC_START_ADD Start of application code. Applications should not be able to
R access memory below this address, except for the single page
at console.

MEMSIZE_PHYSICA Size of physical memory in bytes. WeensyOS does not support
L physical addresses = this value. Defined as 0x200000 (2MB).

MEMSIZE_VIRTUAL = Size of virtual memory. WeensyOS does not support virtual
addresses 2 this value. Defined as 0x300000 (3MB).

Last Time

How to speed up address translation?

TLB (translation-lookaside butter) inside MMU, is a hardware cache of
popular virtual-to-physical address translation

VPN PFN protection bits

Start

l

Extract VPN

'

TLB Hit?

Who manages TLB? [T{

1 TLB Miss
rmissilons OK” (l)
Access Page Table
Hardware-managed (x86, ARM) \ & lg J
S Oftwa re - m a ﬂ a g e d (M | P S) ! Extract PFN [Protection Fault] Update TLB ‘

How to speed up address translation?

TLB (translation-lookaside buftter) inside MMU, is a hardware cache of
popular virtual-to-physical address translation

TLB miss => page fault? No. It might just means we don't have the cache.

. No, the process might request some operations that violates
page fault => TLB miss? PIoEESs TG 155 P .
permission. It is a page fault, but not a TLB miss.

What happens to TLB when

The entire TLB is flushed
%cr3 is loaded?

Can we flush individual Yes, on x86 architectures, you can flush individual TLB entries
entries in the TLB otherwise? using the INVLPG instruction

CR3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

End-to-end Core i7 Address Translation

CPU 32/64 L2, L3, and
p Result |« v
lVirtuaI address (VA) 1 maii memory
36 12 _
VPN VPO L1
, ¢ : .
32I 4 hit miss
TLBT | TLBI
L1 d-cache
l TIB (64 sets, 8 lines/set)
g hit b
—’ 4_
TLB -, —
miss
—» 4_
L1 TLB (16 sets, 4 entries/set) T T T T T T T T
v9 9 5 9 a0 | | 12 l 40 6 6
blPNl VPNZ | VPN3 | VPN4 PPN | PPO | wep CT cl|co
A Physical Y
> [* J J address
> PTE|] b PTE | \»| PTE || L»{ PTE (PA)

Page tables

Cute Trick for Speeding Up L1 Access

p— T > Tag Check
A A A A A 4 4 &
40 7 6 6
. ~
Physical CT ¢ Cl (CO
address <
(PA) PPN PPO
—
T 1 "I o | O [|0 [
Address No
Virtual Translation Change .
< Cl
address . o . 1 Cach
VPN VPO ¢ ache
(VA)
36 12

m Observation
" Bits that determine Cl identical in virtual and physical address
" Can index into cache while address translation taking place
" Cache carefully sized to make this possible: 64 sets, 64-byte cache blocks
" Means 6 bits for cache index, 6 for cache offset
" That’s 12 bits; matches VPO, PPO - One reason pages are 212 bits =4 KB

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Page tfaults

A reference is illegal, either because it's not mapped in the page tables or because
there is a protection violation.

This is a quite powerful mechanism!
(It turns out you can build interesting functionalities by triggering page faults)

How does OS get involved in page fault (in x86)?

Process constructs a trap frame and transfer execution to an interrupt/trap handler

SS stack segment (ignore)
Jorsp former value of stack pointer When page fault happens, the kernel
rflags former value of rflags sets up the process's page entries
s code segment (ignore) properly, or terminates the process
%orip Instruction that caused the trap
Jorsp error code [, U/S | W/R | P]
%rip now points to the code handle the trap U/S: user mode fault / supervisor mode fault
(using Interrupt Descriptor Table) R/W: access was read / access was write

P: not-present page / protection violation

%cr2 holds the faulting virtual address

31 15 543210
% N PSSR
Reserved |£ Reserved O <|%[
P 0 The fault was caused by a non-present page.
1 The fault was caused by a page-level protection violation.
W/R 0 The access causing the fault was a read.
1 The access causing the fault was a write.
U/S 0 A supervisor-mode access caused the fault.
1 A user-mode access caused the fault.
RSVD O The fault was not caused by reserved bit violation.
1 The fault was caused by a reserved bit set to 1 in some
paging-structure entry.
/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.
PK 0 The fault was not caused by protection keys.
1 There was a protection-key violation.
SGX 0 The fault is not related to SGX.

1 The fault resulted from violation of SGX-specific access-control

requirements.

Figure 4-12. Page-Fault Error Code

When does page fault occur?

Overcommitting physical memory

“Your program thinks it has 64GB of memory, but your hardware has 16 GB of physical memory”

How does this work? Rough Implementation
Disk was (is) used to store memory pages On a page fault, the kernel reads in the
faulting page. It may need to send a page to
Advantages: address space looks huge disk (when satisty the following TWO):

Disadvantages: access to "paged" memory (as disk 1. kernel is out of memory
pages that live on the disk are known) are slow 2. the page that it selects to write out is dirty)

What are some other use cases of page fault?

Store memory pages across the network On a page fault, the page fault handler went and retrieved the
(Distributed Shared Memory) needed page from some other machine

When creating a copy of another process, don't copy its memory. Just copy its
: age tables, mark the pages as read-onl
Copy-on-write Pag Pag 4
(fork, mmap, . When a write happens, a page fault results. at that point, the kernel allocates a
new page, copies the memory over, and restarts the user program to do a write
Then, only do copies of memory when there is a fault as a result of a write

Good way to sample what percentage of the memory pages are written to in any

Accounting time slice: mark a fraction of them not present, see how often you get faults

Demand paging

Growing the stack

BSS page allocation

(Block Started by Symbol)

Shared text

Shared libraries

Shared libraries

Paging in day-to-day use
Program code is loaded into memory only when it's needed, not all at once

The seemingly contiguous virtual memory can scatter across different locations
in physical memory

The OS can save memory by not allocating physical pages for the BSS until the
program actually tries to use variables in this segment.

Sharing the read-only parts of a program between multiple processes running
the same program

Multiple programs can use the same library code in memory, saving space

Allowing multiple processes to access the same memory region

Costs of page faults

What does paging from the disk cost?

(1 — p)*memory_access_time + p*page_fault_time

Average memory access time where p is the prob of a page fault
(AMAT)

memeory_access_time(ty) =~ 100ns disk_access_time(ty) =~ 10ms = 10'ns

ty 10'ns

th —ty 107ns

What does p need to be to ensure that

= 107°

2

paging hurts performance by less than 10%7? p=0.1*%

Page faults are super-expensive!
“need to pay attention to the slow case it it's really slow and common enough to matter.”

A Cache System

A Cache System

any system that temporarily stores frequency used data
the cache itself is smaller than the the storage it is cached on

Cache Miss

the requested data isn’t in the cache
1. fetch the missing data from the slower main storage
2. If the cache is full, decide which existing entry to evict to make room

How to decide which entry to throw away if we get a cache miss?

VM as a Cache System

A Cache System

any system that temporarily stores frequency used data
the cache itself is smaller than the the storage it is cached on

*Virtual memory is an abstraction that provides programs with the illusion of a large, contiguous memory space
* Physical RAM is typically much smaller than the virtual address space
* The operating system keeps only a subset of all pages (fixed-size blocks of memory) in physical RAM at any given time

* The rest of the pages are stored on disk (in the swap space or paging file)

How to decide which page to throw away if we get a ‘page-not-present in memory’ fault?

Replacement policy

FIFO MIN (optimal) LRU

throw away the entry that won't throw out the least
throw out the oldest .
be used for the longest time recently used

FIFO

throw out the oldest

Input:

Output:

Replacement policy

MIN (optimal)

throw away the entry that won't
be used for the longest time

How do we evaluate these algorithms?

Reference string (sequence of page accesses)
Cache size (i.e. physical memory)

ot cache evictions (i.e. number of swaps)

LRU

throw out the least
recently used

Replacement policy

FIFO MIN (optimal) LRU
throw away the entry that won't throw out the least
throw out the oldest .
be used for the longest time recently used
A|IB|IC|A|B|/D|A|D|B|C|B AIBICIAIBIDIAIDIBICI|B A|IBIC|A|B|/D|A|D|B|C|B

Number of Hits: 4 Number of Hits: 6 Number of Hits: 6
Page Faults: 7 Page Faults: 5 Page Faults: 5

Hit Rate: 36.36% Hit Rate: 54 .55% Hit Rate: 54.55%

Replacement policy

FIFO MIN (optimal) LRU
throw away the entry that won't throw out the least
throw out the oldest .
be used for the longest time recently used
A|B|C|D|A|[B|C|D|A|B|C|D A|B|C|D|A|B|C|D|A|B|C|D A|B|C|D|A|[B|C|D|A|B|C|D
AAAA.BB A|A[B|C|D|[A|B|C|D|A|B
3 clclclc|c - B|C|D|A|[B|C|D|A|B]|C

Number of Hits: © Number of Hits: 6 Number of Hits: 0
Page Faults: 12 Page Faults: 6 Page Faults: 12

Hit Rate: 0.0% Hit Rate: 50.0% Hit Rate: 0.0%

Replacement policy (adding new memory)

FIFO MIN (optimal) LRU
throw away the entry that won't throw out the least
throw out the oldest .
be used for the longest time recently used
A|B|C|D|A|B|E|A|B|C|D]|E A|B|C|D|A|B|E|A|B|C|D|E A|B|C|D|A|B|E|A|B|C|D|E

Number of Hits: 3 Number of Hits: 5 Number of Hits: 2

Page Faults: 9 Page Faults: 7 Page Faults: 10

Hit Rate: 25.0% Hit Rate: 41.67% Hit Rate: 16.67%

FIFO

throw out the oldest

Replacement policy

MIN (optimal)

throw away the entry that won't
be used for the longest time

LRU

throw out the |least

recently used

Pretty decent!

't approximates OP’

- when:

orinciple of tempora

locality

holds strongly

Implementing LRU

In OS, it doubles the memory traftic
(since after every reference, have to move some structure to the head of some list)

In hardware, it's a lot of work to timestamp each reference and keep the list ordered

Implementing LRU in OS/hardware is a lot of pain!

Bring your questions next
Tuesday!

