CS202 (003): Operating Systems
Virtual Memory I

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Key data structure: page table

a map from VPN to PPN

virtual address VPN Offset

|) OPN|
physical address 1 PN + Offset
0 PPN

Each page table entry expresses a mapping about a contiguous group of address

Multi-level page table

Represent a linear page table as a hierarchy of smaller page tables

Each level uses a portion of the virtual address to index into its table

a) The system starts with the root page table. A virtual address is divided into several parts:
b) It uses the first part of the address to find an entry in this table. e Multiple segments (often 9 bits each) for

c) This entry points to a second-level table. . dexing each level of tables

d) The next part of the address is used to index into this second table. . S .

e) This process continues through all levels. e A tfinal segment (often 12 bits) for the oftset
f) The final level provides the actual physical page number. within the physical page

This tree is space: only fill in parts that are actually in-use!

Alternatives and tradeofts

, Large page size: waste actual memory
Large/small page size | |
Small page size: lots of page table entries

Many level of mapping: Less space spent on page structures when address
space Is space, but more costly for hardware to walk the page table

Many/tew level of mapping

Few level of mapping: Need to allocate larger pages, which cost more space,
but the hardware has fewer levels of mapping

x86-64

x86 architecture is 64-bits

Virtual Address [11000000070 ¢ VPN Offset
s 18147 12 11

bits that matter

Bit patterns that are valid addresses are called Canonical Addresses

48-bit usable bits = 2*° possible addresses = 256 TB

x86-64

x86 architecture is 64-bits

Physical Address U PPN Offset H 4PB
What happen if we only have (roughly) only 34 bits that matters!
16 GB ot memory? the top 18 bits will (generally be) zero

We are mapping 48-bit number to 52-bit number, at a granularity of ranges of 2!

Core i7 Page Table Translation

S 9 3 9 12 Virtual
VPN 1 VPN 2 VPN 3 VPN 4 VPO
address
L1 PT L2 PT L3 PT L4 PT . . .
Page global Page upper Page middle Page L1, L2, L3, L4 all live in physmal
20 directory a0 directory |49 directory |39 table memory
CR3 ——> f £ f
Physical
address Offset into
of L1 PT y12 physical and
— L1 PTE » L2 PTE » L3 PTE » L4 PTE virtual page
Physical
address
512 GB 1GB 2 MB 4 KB of page
region region region region
per entry per entry per entry per entry
Each level of the page table is itself a page 49
: R . 7
(typically 4 KiB) in physical memory. l
40 12 v Physical
PPN PPO
address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Core i7 Level 1-3 Page Table Entries

63 62 52 51 12 11 9 7 4 3 2 1 0
XD | Unused Page table physical base address Unused PS CD | WT |U/S |R/W|P=1
Available for OS P=0

Each entry references a 4K child page table. Significant fields:

P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.

U/S: user or supervisor (kernel) mode access permission for all reachable pages.

WT: Write-through or write-back cache policy for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: Page size: if bit set, we have 2 MB or 1 GB pages (bit can be set in Level 2 and 3 PTEs only).

Page table physical base address: 40 most significant bits of physical page table address (forces

page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this PTE.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Level 4 Page Table Entries

63 62 52 51 12 11 9 8 7 6 5 4 3 2 1)
XD | Unused Page physical base address Unused G D| A |CD|WT|U/SR/W|P=1
Available for OS (for example, if page location on disk) P=0

Each entry references a 4K child page. Significant fields:
P: virtual page is present in memory (1) or not (0)
R/W: Read-only or read-write access permission for this page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page
A: Reference bit (set by MMU on reads and writes, cleared by software)
D: Dirty bit (set by MMU on writes, cleared by software)

Page physical base address: 40 most significant bits of physical page address
(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86-64 address translation

What happens if we want to map a process's from VA 0x0202000 to PA 0x3000,
while making it accessible to user-level but read-only?

36-bit VPN 12-bit Offset
000000000000000000 00000001 O‘OOOOOOOOOOOO (0x0202000)

L1 entry (0) L2 entry (O) L3 entry (1) L4 entry (2) Remember we also has to set

the permission in each L1-3

Each entry 512 GB of 1 GB of 2 MB of 4 KB of table entry properly!

corresponds to ... VA space VA space VA space VA space

2 | Ox00'0000'0003 (40-bit) | ..., U=1,W=0,P=1 |
1

0
Page Table

x86-64 address translation

What is the minimum number of physical pages required on x86-64 to
allocate the following allocations?

1 byte of memory 1 L1, L2, L3 and L4 pages + 1 physical page for the actual memory =5
1 allocation of size 212 bytes of memory same as previous question, because 2!? = 4 KB = 1 page size

2 allocations of size of 212 bytes of memory each 27 (physical pages for the memory) + 4 (L1, L2, L3, L4)

(2°+1) allocations of size of 2'% bytes of memory each (2”+1) (physical pages for the memory) + 3 (L1, L2, L3) + 2 L4

(218+1) (physical pages for the memory) + 2 (L1, L2)
(2!%+1) allocations of size of 2! bytes of memory each +213
+ (27 +1) L4

Quiz Time!

Lab 3 is Due Tomorrow!
(at the end of the day)

