CS202 (003): Operating Systems
Virtual Memory

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202



Last Time



Lottery scheduling

Hold a lottery to determine which process should get to run next, every now and then

- Deals with starvation (if you have ticket, you will make progress)

- Don’t worry that adding one high priority job will starve all others
Advantages - Adding/deleting jobs affects all jobs proportionally

- Can transfer tickets between processes

- Flexible by using ticket as a currency

- Latency is unpredictable

Disadvantages - Expected error somewhat high

Follow-up work to reduce randomness -> Stride Scheduling (see textbook for details)



What Linux does: completely fair scheduler (CFS)

't aims to distribute CPU time fairly among all runnable
processes using a virtual runtime metric.

CFS organizes processes in a red-black tree and selects the one with the lowest virtual
runtime to run next. This approach balances fairness, efficiency, and interactivity.

See the textbook for more details



Scheduling, lesson learned

Write down your goals (policy) before picking the scheduling algorithm (mechanism)

Start from/Compare with the optimal solution, even though it cannot be built

Many schedulers in the system that interact:

mutex, interrupt, disk, network, ...



Let's take a step back...

Process What is a process? Core abstraction inside a process

How does process communicate with low-|level resources?

How can we run multiple process/
threads at the same time?

ow can one process do multiple tasks concurrently?

How does the operating system manage memory for multiple processes efficiently?



Virtual Memory

"Each process has its own view of memory”

16kb

Stack local variables, params, return addresses

Heap malloc()

Data Store global variables and constants

Text/Code Store program itself

Okb

Address space of a process

Does the address space of this program actually at the physical addresses 0 through 16KB?



Virtual Memory

y = X + 1
code address code instruction
Ox500 movqg ©0x200000, %rax
Ox508 incqg 1, 7%rax
Ox510 movqg %rax, 0x300000

How many virtual memory translations happen when the lines above are executed?



Goals/Benetits of Virtual memory

- Program thinks it has a lot of memory, and has its own physical memory

Programmability - Compiler and linker don’t have to worry about physical addresses
- multiple instances of the programs can be loaded and not collide

- Program cannot read/write each other’s memory

Protection - Therefore delivers isolation (prevent bug in one process corrupt with another)

- Programmers don't have to worry that the sum of the memory

Efficient use of resources consumed by all active processes is larger than physical memory



How is the translation implemented?

Translation 3
Process (MMU)
emory Rgquest irtual Address Physical AddresE

Hardware does the translation
OS configure these hardwares Why? this is way faster!

It sets up data structures that hardware sees
(per-process)



Paging

Divide all memory (physical and virtual) into fixed-size chunks

. . o Pages!
In the traditional x86 (and in our labs), the page size will be
4096 B = 4 KB = 2!*
Page Size
210. i1 S How many pages are there What about if there are 48
220. mega on a 32-bit architecture? bits used to address memory?
230. giga
240- tera

232 pytes 248 pytes

20

= 2°" pages = 2% pages = 64 billion pages

212 pytes/page 212 pytes/page



Paging

Each process has a separate mapping
Each page is separately mappea

OS take control on certain (invalid) operations:
f a process tries to write to a page marked as read-only, it triggers a trap
f a process tries to access a page marked as invalid, it triggers a trap

After handling a trap, the OS can modity the memory mapping as needed
(load a page from disk, change permissions, ....)



Page Number

Pages are numbered sequentially

Both virtual and physical memory are
divided in to pages

page O:
page 1:
page 2.
page 3:

0,4095]

4096, 8191]
8192, 12277]
12777, 16384]

page 220_4. ..., 23%-1]

Size of space = #

VPN (virtual page number)
PPN (physical page number)

of bits

What's the size of space for 32
bits virtual address?

Size of space = 232 bits = 4 GB



Key data structure: page table

a map from VPN to PPN

virtual address VPN Offset

| ) OPN|
physical address 1 PN + Offset
0 PPN

Each page table entry expresses a mapping about a contiguous group of address



Another way to look at it

(assuming 48-bit addresses and 4KB pages)

virtual address 36-bit VPN 12-bit Offset

physical address 20-bit PPN 12-bit Offset

it OS wants a program to be able to use address 0x00402000 to refer to physical address

0x00003000, then the OS conceptually adds an entry:
table[0x00402] = 0x00003
(table[1026] = 3 in decimal)




Create the mapping is hard

Page table can get terribly large!

36-bit VPN => 2736 translation from VPN to PPN
Assuming each translation is 8 byte => 2736 * 8 = 512GB
Recall that we are maintaining these mapping per process, 100 process => 51200GB of memory to store address translation!

Most programs only use a small fraction of the available address space,
so it does seem to be a good use of resources



Multi-level page table

Represent a linear page table as a hierarchy of smaller page tables

Each level uses a portion of the virtual address to index into its table

a) The system starts with the root page table. A virtual address is divided into several parts:
b) It uses the first part of the address to find an entry in this table. e Multiple segments (often 9 bits each) for

c) This entry points to a second-level table. . dexing each level of tables

d) The next part of the address is used to index into this second table. . S .

e) This process continues through all levels. e A tfinal segment (often 12 bits) for the oftset
f) The final level provides the actual physical page number. within the physical page

This tree is space: only fill in parts that are actually in-use!



Multi-level page table

Map 2MB of physical memory at virtual memory O, ..., 2 * 21 -1
Let's say we have 48 bits, and we divide the VPN into 4 9 bits segments
First of all, assuming each physical page is 4 KB, then we have 512 physical pages

The Virtual Address Range: We're mapping addresses from O to 2721 - 1 (2MB).
48-bit Address Structure: (It's divided as) 2 bits | 9 bits | 9 bits | 9 bits | 12 bits
For the range 0 to 2721 - 1, the binary representation looks like this (X is either O or 1):
000000000 | 000000000 | 0000000 | XXXXXXXXX | XXXXXXXXXXXX
(Level 1)  (Level 2) (Level 3) (Level 4) (Page Oftset)

The ftirst 9 bits are always 000000000 for our entire range.

Level 1 (Root): . - .
( ) So, we only need one entry in the root table, pointing to the single Level 2 table we'll use.

The next 9 bits are also always 000000000 for our entire range.

Level 2:
Ve Again, we only need one entry, pointing to the single Level 3 table.
Lovel 3 The next 9 bits are also always 000000000 for our entire range.
' Again, we only need one entry, pointing to the single Level 4 table.
The next 9 bits (XXXXXXXXX) can represent any value from 000000000 to 111111111.
Level 4: This gives us 229 = 512 different combinations.

That's why we need 512 entries in this level.



Alternatives and tradeofts

, Large page size: waste actual memory
Large/small page size | |
Small page size: lots of page table entries

Many level of mapping: Less space spent on page structures when address
space Is space, but more costly for hardware to walk the page table

Many/tew level of mapping

Few level of mapping: Need to allocate larger pages, which cost more space,
but the hardware has fewer levels of mapping



x86-64

x86 architecture is 64-bits

Virtual Address [ 11000000070 ¢ VPN Offset
s 18147 12 11

bits that matter

Bit patterns that are valid addresses are called Canonical Addresses

48-bit usable bits = 2*° possible addresses = 256 TB



x86-64

x86 architecture is 64-bits

Physical Address U PPN Offset H 4PB
What happen if we only have (roughly) only 34 bits that matters!
16 GB ot memory? the top 18 bits will (generally be) zero

We are mapping 48-bit number to 52-bit number, at a granularity of ranges of 2!



