CS202 (003): Operating Systems
Scheduling

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last Time

Scheduling disciplines (without 1/O)

FCFS/FIFO SJF and STCF Round-robin (RR)

FCFS/FIFO

Run each job until it's done

Job Time Needed (s) P1 P2 P3

o1 24
Do 3 3 jobs . _ 24 + 27 + 30
Throughput = = (0.1 jobs/second Avg Turnaround Time = =27
P3 3 30 seconds 3
How can we lower avg turnaround time? P2 P3 P1
- simple
Advantages - no starvation

- few context switches

Disadvantages - short jobs get stuck behind long ones!

SJF and STCF

Schedule the job whose next CPU Preemptive version of SJF: if the new job arrived has a shorter time to completion than the
burst is the shortest remaining time on the current job, immediately preempt CPU to give to new job

Job Arrival Time (s) Burst Time (s)

0123450678 9101112131415

5o 5 4 P1 P2 P3P2 P4 P
P3 4 1
o4 5 4

Advantages - Discuss later!

Disadvantages - Discuss later!

Round Robin

Preempt CPU from long-running jobs (per time slice/quantum)
=> it a job hasn't finished by the end of a time slice,
put it to the back of the ready queue

Let's start considering response time
(i.e., we are adding a timer our scheduler)

- Fair allocation of CPU across jobs
Adva ntages - Low average response time when job length vary
- Good for output time if small number of jobs

Disadvantages - RR does not care about turnaround time!

What is the average turnaround

Job Time Needed (in time unit)

time if we have quantum of 17 What happens if we use FIFO?

100.5 75
P2 50

Round Robin

Preempt CPU from long-running jobs (per time slice/quantum)
=> it a job hasn't finished by the end of a time slice,
put it to the back of the ready queue

Let's start considering response time
(i.e., we are adding a timer our scheduler)

- Fair allocation of CPU across jobs
Adva ntages - Low average response time when job length vary
- Good for output time if small number of jobs

Disadvantages - RR does not care about turnaround time!

- Want much larger than context switch cost (amortization)
- Majority of bursts should be less than quantum

- If too small -> spend too much time context switching

- If too large -> response time suffers (and reverts to FIFO)

How do we choose
quantum size?

Scheduling disciplines (with 1/0)

Time Needed
P 1 CPU-bound, 1 week
P2 CPU-bound, 1 week

P3 /0 bound, loop: 1ms CPU, 10ms Disk I/O

RR RR
FCES/FIFO STCF
(100ms quantum) (Tms quantum)
P1+P2 will take 2
CPU : - CPU rrnrmnmnmnmnnn: CPU -
weeks
Disk " Disk & Disk
10ms 10ms Good disk utilization
Disk Utilization = 0T ~ 5% Disk Utilization = T ~ 91 % Optimal average turnaround time

Low overhead

SJF and STCF

Schedule the job whose next CPU Preemptive version of SJF: if the new job arrived has a shorter time to completion than the
burst is the shortest remaining time on the current job, immediately preempt CPU to give to new job

Job Arrival Time (s) Burst Time (s)

D1 0 7 01234567 8 9101112131415
b5 5 4 Pl P2 P3P2 P4 P1

P3 4 1

P4 5 4

- Good disk utilization
Advantages - Optimal (minimum) average turnaround time
- Low overhead (no needless preemption)

- Long-running jobs get starved
Disadvantages - Does not optimize response time
- Requires predicting the future

Predicting CPU burst: EWMA

(exponentially weighted average)

Attempt to estimate future based on the past

t, :(time) length of proc's nth purst
... estimate for n + 1 burst
.. =a*t +(1—-—a)*r, where 0 < a <1

Favor jobs that have been using CPU the least amount of time

Key idea in scheduling: Priority

Give every process a number, and g

(which is either t

ive the CPL

ne highest/

to the process with highest priority
owest numbers)

We don't want to use strict priority (that leads to starvation on low priority tasks)

To reduce starvation, we can increase a process's priority as it waits

Optimizing turnaround + response time: MLFQ

(multi-level feedback queue)

Multiple queues, each with
different priority

Processes priority changes

RR within each queue .
overtime

- Approximate SRTCF (shortest remaining time first)
Advantages - It overall gives higher priority that use less CPU time
- Helps reduce average turnaround time and response time for short jobs

- Cannot donate priority
Disadvantages - Not very flexible

- Not good for real-time and multimedia

- Can be gameable

Another way of optimization: fair-share scheduler

Try to guarantee that each job obtain a certain percentage ot CPU time

Lottery scheduling

Tickets: the share of a resource that a process should receive
The percent of tickles that a process has represents its share of the system resources

Hold a lottery to determine which process should get to run next, every now and then

Let p; has 7, tickets

Let 7' be total # of tickets, 7' = Z li Control long-term average proportion of

t CPU for each process!

l

Chance of winning the next quantum = =

Lottery scheduling

Hold a lottery to determine which process should get to run next, every now and then

- Deals with starvation (if you have ticket, you will make progress)

- Don’t worry that adding one high priority job will starve all others
Advantages - Adding/deleting jobs affects all jobs proportionally

- Can transfer tickets between processes

- Flexible by using ticket as a currency

- Latency is unpredictable

Disadvantages - Expected error somewhat high

Follow-up work to reduce randomness -> Stride Scheduling (see textbook for details)

