
CS202 (003): Operating Systems
Concurrency V

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last Time

Therac-25

Intended
Setting

Beam
Energy

Beam
Current

Beam
Modifier

Electron
therapy

5-25 MeV low Magnets

X-ray (photon)
therapy

25 MeV
high

(100x)
Flattener

Field
illumination

0 0 None

Therac-25

Intended
Setting

Beam
Energy

Beam
Current

Beam Modifier
(determined by the TT)

Electron
therapy

5-25 MeV low Magnets

X-ray (photon)
therapy

25 MeV high (100x) Flattener

Field
illumination

0 0 None

What can go wrong?

high (100x) MagnetsX

5-25 MeV

25 MeV

X

X

Field illumination

Field illumination

What actually go wrong?

2 software problems and a bunch of non-technical problems

Software problem I

Three threads

Treat Hand Keyboard
sets a bunch of other parameters

(magnets, energy, current)
read the top byte

sets the turntable position
read the bottom byte

invoked when user types, writes the
input to a two-byte shared variable

Software problem I
sets the turntable position

read the bottom byte

invoked when user types, writes the
input to a two-byte shared variable

sets a bunch of other parameters
read the top byte

8s

sets a bunch of other parameters
read the top byte

sets the turntable position
read the bottom byte

invoked when user types, writes the
input to a two-byte shared variable

8s

What should have been done?

Software problem I

Software problem II

What else are wrong?
System Design FailuresSoftware Engineering Issues Human Errors

What else are wrong?
System Design FailuresSoftware Engineering Issues Human Errors

No real quality control
(lack of unit testing …)

Complex and poor code

Use old code without
much thinking

No error documentation
No documentation of

software design

No end-to-end
consistency checks

No backup plan to
tolerate error (like using

hardware interlocks)

Not readable error
messages

Assume software is
always correct

“Think” errors are fixed
without enough formal

reasoning

Company did not inform
the failures, user

weren’t required to
report failures

Operators think re-do
things will fix the problem

Lack of investigation
when failures occur

What should have been done?

Adding a consistency check!

Assume software will make mistakes

Always have back-up failure plans

……

Why are we discussing this?

“There is always another software bug.”

https://medium.com/design-bootcamp/embracing-the-0-bug-policy-a-paradigm-shift-for-bug-free-software-76d18ab53759

 Theme in building systems: be tolerant of inputs / be strict about outputs!

Have you ever wondered how we
decide what next process/thread to run?

Operating system has to decide on this!

When scheduling decisions happen

Preemptive scheduling
willing to stop one process from running in order to run another

(i) switches from running to waiting state
(ii) switches from running to ready state
(iii) switches from waiting to ready
(iv) exits

Non-preemptive scheduling
run each job to completion before considering whether to run a

new job

(i), (ii), (iii), (iv)

(i), (iv)

New

Ready

Running

Waiting

Terminated

admitted

wait for
I/O or event

completion of
I/O or event

scheduler
dispatchinterrupt

exit

What are the metrics and criteria for making decisions?

Turnaround time
Time for each process to complete

(from arrival)

Waiting/Response/Output time
Time spent waiting for something to happen

Response time: time between when jobs enters system and starts executing

Output time: time from request to first response

System throughout
of processes that complete per unit time

Fairness
(different possible definitions)

Free from starvation
All users get equal time on CPU
Highest priority jobs get most of CPU

……

We call …

Context Switch
Stopping one running process temporality and

resuming (or starting) another process

Context switching has a cost! CPU time in kernel: save/restore registers, switch address spaces
Indirect cost: TLB shootdown, processor caches, OS caches

 More frequent context switches will lead to worse throughput (higher overhead)

Scheduling disciplines (without I/O)

FCFS/FIFO SJF and STCF Round-robin (RR)

FCFS/FIFO
Run each job until it’s done

Job Time Needed (s)
P1 24
P2 3
P3 3

P1 P2 P3

Throughput =
3 𝚓𝚘𝚋𝚜

30 𝚜𝚎𝚌𝚘𝚗𝚍𝚜 = 0.1 𝚓𝚘𝚋𝚜/𝚜𝚎𝚌𝚘𝚗𝚍 Avg Turnaround Time =
24 + 27 + 30

3 = 27

How can we lower avg turnaround time? P2 P3 P1

Advantages

Disadvantages

- simple

- no starvation

- few context switches

- short jobs get stuck behind long ones!

