
CS202 (003): Operating Systems 
Concurrency V

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202



Quiz Time!



Last Time



Deadlock

T1:	
acquire(mutexA);	
acquire(mutexB);	

//	do	some	stuff	

release(mutexB);	
release(mutexA);

T2:	
acquire(mutexB);	
acquire(mutexA);	

//	do	some	stuff	

release(mutexA);	
release(mutexB);

Example 1



class	N	{	
				private:	
								Mutex	mutex_n;	
								Cond	cond_n;	
								int	navailable;	

				public:	
								N();	
								~N();	
								void*	alloc(int	nwanted);	
								void	free(void*);	
}

Deadlock

Example 2: Code see handout

M:	
acquire(&mutex_m);	
n.alloc(nwanted)	

acquire(&mutex_m);	

N:	

acquire(&mutex_n)	
navailable	<	nwanted	
release(&mutex_n)		

class	M	{	
				private:	
								Mutex	mutex_m;	
								//	instance	of	monitor	N	
								N	another_monitor;	

								//	Assumption:	no	other	objects	
//	in	the	system	hold	a	pointer	

								//	to	our	"another_monitor"	

				public:	
								M();	
								~M();	
								void	methodA();	
								void	methodB();	
};



Deadlock



Deadlock



Deadlock

Happens when all four conditions are present: 
(1) Mutual exclusion 
(2) Hold and wait 
(3) No pre-emption 
(4) Circular wait 



Preventing deadlock

Ignore It!

Detect & Recover

Avoid Algorithmically

Negate Any of the Conditions

Static/Dynamic Analysis

Works in development, not really viable for production 

There are ways but we don’t cover them in this class1

Check the following if you are curious:

1Section 6.5.3 of Modern Operating Systems (Tanenbaum)


2Engler, D. and K. Ashcraft. RacerX: effective, static detection of race conditions and deadlocks.

3Savage, S., M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: a dynamic data race detector for multithreaded programs.

Static: detect potential errors without running the code2 

Dynamic: detect (potential) error during/after execution3

Hold and wait 
not likely to work 

Mutual exclusion 
put a queue for 

accessing resources

No preemption 
not likely to work 

Circular dependency 
put partial order on locks 

(=> no cycles)

“admit defeat”



Other progress issues

Starvation Priority Inversion

Thread waiting indefinitely 
(if low priority and/or resource is contended)

T1: 
(highest priority)

T2:  
(middle priority)

T3: 
(lowest priority)

hold the lock
start preempt T3

waiting for lock
start

running

Why does T2 control the CPU?



Priority inversion - potential fixes
Solution 1

T1: 
(highest priority)

T2:  
(middle priority)

T3: 
(highest priority)

hold the lock
start

waiting for lock
finish T3

release the lock
acquire the lock

running
……

Solution 2

T1: 
(highest priority)

T2:  
(middle priority)

T3: 
(lowest priority)

hold the lock
start

waiting for lock
disable interrupt

finish T3
release the lock

acquire the lock
running

……

Solution 3
Don’t handle it.  

Design the code wisely so that only adjacent priority processes/threads share the lock



Performance issues and tradeoffs

Implementation of spinlocks/
mutexes can be expensive

Coarse locks limit 
available parallelism

Fine-grained locking leads to 
complexity and hence bugs

Mutex costs: 
•instructions to execute “mutex acquire” 
•sleep/wake up brings resource cost

Spinlock costs: 
• cross-talk among CPUs 
• cache line bounces 
• fairness issues

But, you should still 
start with coarse locks!

See “filemap.c” in 
handout

*Look up “MCS locks” if curious

Only 1 CPU can execute 
anywhere in the part of your 

code protected by a lock



Programmability issues

Loss of modularity

What’s the fundamental problem?

To avoid deadlock, you need to 
understand how program call each other

You also need to know, whether library 
functions is thread-safe when you call it. 

If not, add mutex!

https://bonkersworld.net/building-software

Shared memory programming model is hard to use correctly



Some moments of reality about interleaving

Modern multi-CPU hardware does not guarantee sequential consistency

Remember sequential consistency?

https://gunshowcomic.com/648



struct	foo	{	
				int	abc;	
				int	def;	
};	
static	int	ready	=	0;	
static	mutex_t	mutex;	
static	struct	foo*	ptr	=	0;	

void	
doublecheck_alloc()	
{	
				if	(!ready)	{	/*	<--	accesses	shared	variable	w/out	holding	mutex	*/	

								mutex_acquire(&mutex);	
								if	(!ready)	{	
												ptr	=	alloc_foo();	/*	<--	sets	ptr	to	be	non-zero	*/	
												ready	=	1;	
								}	

								mutex_release(&mutex);	

				}	
				return;	
}

Where is the bug?



Yet, if you use mutex correctly…

You don’t have to worry about arbitrary interleaving

You don’t have to worry about what hardware is truly doing

Critical sections execute atomically

Threading library and compiler do the hard work for you



That does not apply if you do low-level programming

move	$1,	0x10000			#	write	1	to	memory	address	10000	
move	$2,	0x20000			#	write	2	to	memory	address	20000	
MFENCE	
move	$3,	0x10000			#	write	3	to	memory	address	10000	
move	$4,	0x30000			#	write	4	to	memory	address	30000

If any memory write after MFENCE (in program order) is visible to another CPU,  
then that other CPU also sees all memory writes before the MFENCE

MUST ensure the compiler is not reordering key instructions

MUST know the memory model (of the hardware)

MAY know when to insert memory barriers

"acquire" and "release" in 
mutexes need memory barriers

“xchg” on x86 includes an implicit memory barrier



struct	foo	{	
				int	abc;	
				int	def;	
};	
static	int	ready	=	0;	
static	mutex_t	mutex;	
static	struct	foo*	ptr	=	0;	

void	
doublecheck_alloc()	
{	
				if	(!ready)	{	/*	<--	accesses	shared	variable	w/out	holding	mutex	*/	

								mutex_acquire(&mutex);	
								if	(!ready)	{	
												ptr	=	alloc_foo();	/*	<--	sets	ptr	to	be	non-zero	*/	
												ready	=	1;	
								}	

								mutex_release(&mutex);	

				}	
				return;	
}

Where is the bug?


